Advanced Data Structures V sem Computer Engineering

S.N O.	UNIT	LECTURE	CONTENTS
1	Advanced Trees	LECTURE1	TREES: Definitions,
		LECTURE2	Operations on Weight Balanced Trees
		LECTURE3	Huffman Trees
		LECTURE4	2-3 Trees
		LECTURE5	Red- Black Tree
		LECTURE6	Dynamic Order Statistics
		LECTURE7	Interval Tree
		LECTURE8	Dictionaries
2	MERGEABLE	LECTURE9	Mergeable Heap Operations
	HEAPS	LECTURE10	Binomial Trees
		LECTURE11	mplementing Binomial Heaps and its Operations
		LECTURE12	2-3-4. Trees
		LECTURE13	2-3-4 Heaps.
		LECTURE14	Amortization analysis and Potential Function of Fibonacci Heap
		LECTURE15	Amortization analysis and Potential Function of Fibonacci Heap
3	GRAPH THEORY	LECTURE16	Definitions of Isomorphic Components. Circuits, Fundamental Circuits
	DEFINITIONS	LECTURE17	Cut-sets. Cut- Vertices Planer and Dual graphs
		LECTURE18	Spanning Trees, Kuratovski's two Graphs
		LECTURE19	Algorithms for Connectedness, Finding all Spanning Trees in a Weighted Graph
		LECTURE20	Breadth First and Depth First Search
		LECTURE21	Topological Sort, Strongly Connected Components and Articulation Point.
		LECTURE22	Single Min-Cut Max-Flow theorem of Network Flows.Ford-Fulkerson Max Flow Algorithms.
		LECTURE23	Ford-Fulkerson Max Flow Algorithms.
4	SORTING NETWORK	LECTURE24	Comparison network
		LECTURE25	zero-one principle
		LECTURE26	bitonic sorting
		LECTURE27	Priority Queues

		LECTURE28	Concatenable Queues using 2-3 Trees
		LECTURE29	Operations on Disjoint sets
		LECTURE30	set u ni o n -fi nd p ro blem
		LECTURE31	Implementing Sets
		LECTURE32	merging network sorter,
5	NUMBER THEORITIC ALGORITHM	LECTURE33	Number theoretic notions
		LECTURE34	Division theorem, GCD
		LECTURE35	recursion, Modular arithmetic
		LECTURE36	Solving Modular Linear equation Chinese Remainder Theorem
		LECTURE37	Chi n ese Rem ain d er Theo rem
		LECTURE38	power of an element
		LECTURE39	Computation of Discrete Logarithms
		LECTURE40	primality Testing and Integer Factorization