DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

LECTURE PLAN

DIGITAL ELECTRONICS (III SEM- CS)

Pankaj Kumar Israni (Guest Faculty)

S.No.	Chapter Title	Lectures	Contents of the Lectures
	•	1	Binary Arithmetic & Radix representation of different numbers
		2	Fixed point representation, complement notation
		3	various codes & arithmetic in different codes & their inter
			conversion
1	NUMBER SYSTEMS,	4	Features of logic algebra, postulates of Boolean algebra
	BASIC LOGIC GATES &	5	Theorems of Boolean algebra. Boolean function
	BOOLEAN ALGEBRA	6	Derived logic gates: Exclusive-OR, NAND, NOR gates, their
			block diagrams and truth tables
		7	Logic diagrams from Boolean expressions and vica-versa.
		8	Converting logic diagrams to universal logic. Positive, negative
			and mixed logic. Logic gate conversion
2		9	TTL logic gate characteristics
		10	Theory & operation of TTL NAND gate circuitry
	DIGITAL LOGIC GATE CHARACTERISTICS	11	Open collector TTL
		12	Three state output logic
		13	TTL subfamilies. MOS & CMOS logic families
		14	Realization of logic gates in RTL
		15	DTL, ECL, C-MOS & MOSFET
		16	Interfacing logic families to one another
		17	Minterm, Maxterm, Karnaugh Map
3		18	K map upto 4 variables
	MINIMIZATION	19	Simplification of logic functions with K-map
		20	conversion of truth tables in POS and SOP form
	TECHNIQUES	21	Incomplete specified functions
		22	Variable mapping
		23	Quinn-Mc Klusky minimization techniques
		24	Combinational logic circuit design
		25	half and full adder, subtractor, Binary serial and parallel adders
		26	BCD adder, Binary multiplier
		27	Decoder: Binary to Gray decoder
4	COMBINATIONAL	28	BCD to decimal, BCD to 7-segment decoder
	SYSTEMS	29	Multiplexer, demultiplexer
		30	Encoder. Octal to binary, BCD to excess-3 encoder
		31	Diode switching matrix
		32	Design of logic circuits by multiplexers, encoders, decoders and
			demultiplexers
		33	Latches, flip-flops, R-S, D, J-K, Master Slave flip flops
5		34	Conversions of flip-flops, Counters, Asynchronous (ripple)
		35	synchronous and synchronous decade counter
	CECTIENTIAL CAZOTERAS	36	Modulus counter, skipping state counter
5	SEQUENTIAL SYSTEMS	37	counter design. Ring counter, Counter applications
		38	Registers
		39	buffer register
		40	shift register