Syllabus of UNDERGRADUATE DEGREE COURSE

Electronics Instrumentation & Control

Rajasthan Technical University, Kota Effective from session: 2018 – 2019

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI2-01: Advance Engineering Mathematics-II

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal mappings, Mobius transformations and their properties.	7
3	Complex Variable - Integration: Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).	8
4	Applications of complex integration by residues: Evaluation of definite integral involving sine and cosine. Evaluation of certain improper integrals.	4
5	Special Functions: Legendre's function, Rodrigues formula, generating function, Simple recurrence relations, orthogonal property. Bessel's functions of first and second kind, generating function, simple recurrence relations, orthogonal property.	10
6	Linear Algebra: Vector Spaces, subspaces, Linear independence, basis and dimension, Inner product spaces, Orthogonality, Gram Schmidt orthogonalization, characteristic polynomial, minimal polynomial, positive definite matrices and canonical forms, QR decomposition.	10
	Total	40

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI1-03/3EI1-03: Managerial Economics And Financial Accounting

2 Credit Max. Marks: 100 (IA:20, ETE:80)
2L:0T:0P End Term Exam: 2 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds-flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	Total	26

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI1-02/3EI1-02: Technical Communication

2 Credit Max. Marks: 100 (IA:20, ETE:80)
2L:0T:0P End Term Exam: 2 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing- Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	Total	26

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI4-04: Analog Circuits

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Diode Circuits, Amplifier models: Voltage amplifier, current amplifier, trans-conductance amplifier and trans-resistance amplifier. Biasing schemes for BJT and FET amplifiers, bias stability, various configurations (such as CE/CS, CB/CG, CC/CD) and their features, small signal analysis, low frequency transistor models, estimation of voltage gain, input resistance, output resistance etc., design procedure for particular specifications, low frequency analysis of multistage amplifiers.	8
3	High frequency transistor models, frequency response of single stage and multistage amplifiers, cascode amplifier. Various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues. Feedback topologies: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., calculation with practical circuits, concept of stability, gain margin and phase margin.	8
4	Oscillators: Review of the basic concept, Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.), LC oscillators (Hartley, Colpitt, Clapp etc.), non-sinusoidal oscillators. Current mirror: Basic topology and its variants, V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load. Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR. OP-AMP design: design of differential amplifier for a given specification, design of gain stages and output stages, compensation.	8
5	OP-AMP applications: review of inverting and non-inverting amplifiers, integrator and differentiator, summing amplifier, precision rectifier, Schmitt trigger and its applications. Active filters: Low pass, high pass, band pass and band stop, design guidelines.	8
6	Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, resistor string etc. Analog to digital converters (ADC): Single slope, dual slope, successive approximation, flash etc. Switched capacitor circuits: Basic concept, practical configurations, application in amplifier, integrator, ADC etc.	7
	Total	40

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Course Outcome:

Course Code	Course Name	Course Outcome	Details
		CO 1	Understand the characteristics of diodes and transistors
70	Circuits	CO 2	Design and analyze various rectifier and amplifier circuits
4E14-04	_	CO 3	Design sinusoidal and non-sinusoidal oscillators
4	Analog	CO 4	Understand the functioning of OP-AMP and design OP-AMP based circuits
		CO 5	Understanding the designing of ADCs and DACs

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
70	CO 1	3		1	1	2							
4-04 Circuits	CO 2	1	1	2		1							
	CO 3	3	1		1								
4EI Analog	CO 4	2				2							
1	CO 5	2	3		2								

3: Strongly 2: Moderate 1: Weak

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Lecture Plan:

Lecture No.	Content to be taught
-	
Lecture 1	Zero Lecture
Lecture 2	Diode Circuits and Amplifier models
Lecture 3	Voltage amplifier, current amplifier, trans-conductance amplifier and trans-resistance amplifier
Lecture 4	Biasing schemes for BJT and FET amplifiers
Lecture 5	Bias stability in various configurations such as CE/CS, CB/CG, CC/CD
Lecture 6	Small signal analysis of BJT and FET
Lecture 7	low frequency transistor models
Lecture 8	Estimation of voltage gain, input resistance, output resistance etc.
Lecture 9	Design procedure for particular specifications, low frequency analysis of multistage amplifiers.
Lecture 10	High frequency transistor models
Lecture 11	frequency response of single stage and multistage amplifiers
Lecture 12	Cascode Amplifier
Lecture 13	Various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues
Lecture 14	Feedback topologies: Voltage series, current series, voltage shunt, current shunt
Lecture 15	Effect of feedback on gain, bandwidth etc.,
Lecture 16	Calculation with practical circuits
Lecture 17	Concept of stability, gain margin and phase margin.
Lecture 18	Basics of oscillator
Lecture 19	Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.)
Lecture 20	LC oscillators (Hartley, Colpitt, Clapp etc.)
Lecture 21	Non-sinusoidal oscillators. Current mirror: Basic topology and its variants,

SYLLABUS

 2^{nd} Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

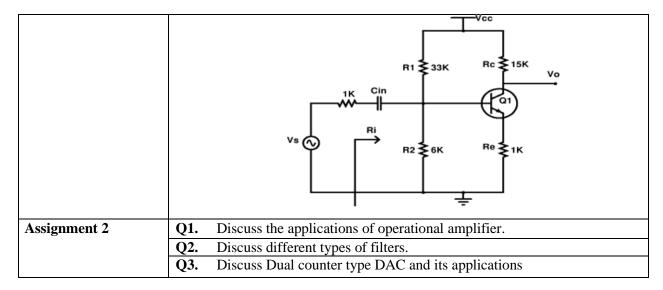
Lecture 22	V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load.					
Lecture 23	Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR.					
Lecture 24	OP-AMP design: design of differential amplifier for a given specification					
Lecture 25	Design of gain stages and output stages, compensation					
Lecture 26	OP-AMP applications: review of inverting and non-inverting amplifiers					
Lecture 27	Integrator and differentiator, summing amplifier					
Lecture 28	Precision rectifier, Schmitt trigger and its applications					
Lecture 29	Active filters: Low pass, high pass					
Lecture 30	Band pass and band stop Filters					
Lecture 31	Filter Design guidelines					
Lecture 32	Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, resistor string etc					
Lecture 33	Analog to digital converters (ADC): Single slope, dual slope					
Lecture 34	successive approximation, flash TYPE ADC					
Lecture 35	Switched capacitor circuits: Basic concept					
Lecture 36	Switched capacitor circuits: practical configurations					
Lecture 37	Switched capacitor circuits: applications					
Lecture 38	Spill over classes					
Lecture 39	Spill over classes					
Lecture 40	Spill over classes					

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT
- 3. Hand-outs

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)


Sample assignments:

Assignment 1 **Q1.** Assume that a silicon transistor with $\beta = 50$, $V_{BEactive} = 0.7$ V, $V_{CC} = 15$ V and R_C=10K is used in the Fig.1.It is desired to establish a Q-point at V_{CE} =7.5 V and I_{C} =5mA and stability factor S≤5.Find Re, R_1 and R_2 . R2 **Q2.** In the Darlington stage shown in Fig.2 , $V_{CC}=15V$, $\beta_1=50$, β_2 =75, V_{BE} =0.7, R_C =750 Ω and R_E =100 Ω . If at the quiescent point V_{CE2}=6V determine the value of R. **Q3.** For the amplifier shown in Fig.3 using a transistor whose parameters are $h_{ie}=1100, h_{re}=2.5\times10^{-4}, h_{fe}=50, h_{oe}=24\mu\text{A/V}$. Find A_{I} , A_{V} , A_{VS} and R_{i} .

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI4-05: Microcontrollers

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Overview of microcomputer systems and their building blocks, memory interfacing, concepts of interrupts and Direct Memory Access, instruction sets of microprocessors (with examples of 8085 and 8086);	10
3	Interfacing with peripherals - timer, serial I/O, parallel I/O, A/D and D/A converters; Arithmetic Coprocessors; System level interfacing design;	8
4	Concepts of virtual memory, Cache memory, Advanced coprocessor Architectures- 286, 486, Pentium; Microcontrollers: 8051 systems,	10
5	Introduction to RISC processors; ARM microcontrollers interface designs.	11
	Total	40

Course Outcome:

Course Code	Course Name	Course Outcome	Details
		CO 1	Develop assembly language programming skills.
8	ontrollers	CO 2	Able to build interfacing of peripherals like, I/O, A/D, D/A, timer etc.
4E14-05	contr	CO 3	Develop systems using different microcontrollers.
14	Micro	CO 4	Explain the concept of memory organization.
	Z	CO 5	Understand RSIC processors and design ARM microcontroller based systems.

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
LS	CO 1			3	1								
- trolle	CO 2			3		1							
4E104-	CO 3	1	2	3									
4E104- 05Microcontrollers	CO 4	3	2	1									
05	CO 5			3	2	1							

3: Strongly

2: Moderate

1: Weak

Lecture Plan:

Lecture No.	Content to be	e taught
Lecture 1	Zero Lecture	
Lecture 2	Overview of microcomputer systems and their	building blocks
Lecture 3	Overview of microcomputer systems and their	building blocks
Lecture 4	Memory interfacing	
Lecture 5	Memory interfacing	
Lecture 6	Concepts of interrupts	
Lecture 7	Direct Memory Access	
Lecture 8	Direct Memory Access	
Lecture 9	Instruction sets of microprocessors (with exam	ples of 8085 and 8086)
Lecture 10	Instruction sets of microprocessors (with exam	ples of 8085 and 8086)
Lecture 11	Instruction sets of microprocessors (with exam	ples of 8085 and 8086)
Lecture 12	Instruction sets of microprocessors (with exam	ples of 8085 and 8086)
Lecture 13	Interfacing with peripherals	Office of Dean Academic Affairs Rajasthan Technical University, Ko

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS 2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Lecture 14	Timer
Lecture 15	Serial I/O
Lecture 16	Parallel I/O
Lecture 17	A/D and D/A converters;
Lecture 18	A/D and D/A converters
Lecture 19	Arithmetic Coprocessors
Lecture 20	System level interfacing design
Lecture 21	Concepts of virtual memory, Cache memory
Lecture 22	Concepts of virtual memory, Cache memory
Lecture 23	Advanced coprocessor Architectures- 286, 486, Pentium
Lecture 24	Advanced coprocessor Architectures- 286, 486, Pentium
Lecture 25	Advanced coprocessor Architectures- 286, 486, Pentium
Lecture 26	Microcontrollers: 8051 systems,
Lecture 27	Microcontrollers: 8051 systems,
Lecture 28	Microcontrollers: 8051 systems,
Lecture 29	Microcontrollers: 8051 systems,
Lecture 30	Microcontrollers: 8051 systems,
Lecture 31	Introduction to RISC processors
Lecture 32	Introduction to RISC processors
Lecture 33	Introduction to RISC processors
Lecture 34	ARM microcontrollers interface designs
Lecture 35	ARM microcontrollers interface designs
Lecture 36	ARM microcontrollers interface designs
Lecture 37	ARM microcontrollers interface designs
Lecture 38	ARM microcontrollers interface designs
Lecture 39	Spill Over Classes
Lecture 40	Spill Over Classes
	Office of Dean Academic Affair

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT
- **3.** Hand-outs

Assignments:

Assignment 1	Q1. Compare between microprocessor & microcontroller based on no. of instructions used, registers, memory and applications.												
	Q2. Interface external program memory with 8051 & explain how the data is transfer.												
	Q3. List the I/O ports of microcontroller 8051. Explain their alternat function?												
Assignment 2	Q1. Explain RISC and CISC?												
	Q2. Without using MUL instruction, perform multiplication operation on any two operands, with both of them being: a. Positive numbers												
	b. One positive and other negative numberc. Both negative numbersVerify the values computed.												
	Q3. Can you brief up the evolution of ARM architecture?												

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI3-06: Measurement & Instrumentation

Credit: 3 Max. Marks: 150(IA:30, ETE:120) 3L+0T+0P**End Term Exam: 3 Hours**

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	THEORY OF ERRORS - Accuracy & precision, Repeatability, Limits of errors, Systematic & random errors, Modeling of errors, Probable error & standard deviation, Gaussian error analysis, Combination of errors.	8
3	Measuring Instruments - Moving coil, moving iron, Electrodynamic and induction instruments-construction, operation, torque equation and errors. Applications of instruments for measurement of current, voltage, single-phase power and single-phase energy. Errors in wattmeter and energy meter and their compensation and adjustment. Testing and calibration of single-phase energy meter by phantom loading. Electronic Voltmeter, Electronic Multimeters, Digital Voltmeter, and Component Measuring Instruments: Q meter, Vector Impedance meter	8
4	Polyphase Metering - Blondel's Theorem for n-phase, p-wire system. Measurement of power and reactive kVA in 3-phase balanced and unbalanced systems: One-wattmeter, two-wattmeter and three-wattmeter methods. 3-phase induction type energy meter. Instrument Transformers: Construction and operation of current and potential transformers. Ratio and phase angle errors and their minimization. Effect of variation of power factor, secondary burden and frequency on errors. Testing of CTs and PTs. Applications of CTs and PTs for the measurement of current, voltage, power and energy.	7
5	Measurement of Resistances - Classification of resistance. Measurement of medium resistances— ammeter and voltmeter method, substitution method, Wheatstone bridge method. Measurement of low resistances— Potentiometer method and Kelvin's double bridge method. Measurement of high resistance: Price's Guard-wire method. Measurement of earth resistance.	8
6	AC Bridges - Generalized treatment of four-arm AC bridges. Sources and detectors. Maxwell's bridge, Hay's bridge and Anderson bridge for self-inductance measurement. Heaviside's bridge for mutual inductance measurement.De Sauty Bridge for capacitance measurement.Wien's bridge for capacitance and frequency measurements.Sources of error in bridge measurements and precautions.Screening of bridge components.Wagner earth device.	8
	Total	40

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI4-07: Analog and Digital Communication

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Review of signals and systems, Frequency domain representation of signals, Principles of AmplitudeModulation Systems- DSB, SSB and VSB modulations. Angle Modulation, Representation of FM and PM signals, Spectral characteristics of angle modulated signals.	8
3	Review of probability and random process. Gaussian and white noise characteristics, Noise in amplitude modulation systems, Noise in Frequency modulation systems. Pre-emphasis and Deemphasis, Threshold effect in angle modulation.	7
4	Pulse modulation. Sampling process. Pulse Amplitude and Pulse code modulation (PCM), Differential pulse code modulation. Delta modulation, Noise considerations in PCM, Time Division multiplexing, Digital Multiplexers.	8
5	Elements of Detection Theory, Optimum detection of signals in noise, Coherent communication with waveforms- Probability of Error evaluations. BasebandPulse Transmission- Inter symbol Interference and Nyquist criterion. Pass band Digital Modulation schemes- Phase Shift Keying, Frequency Shift Keying, Quadrature Amplitude Modulation, Continuous Phase Modulation and Minimum Shift Keying.	8
6	Digital Modulation tradeoffs. Optimum demodulation of digital signals over band-limitedchannels- Maximum likelihood sequence detection (Viterbi receiver). Equalization Techniques. Synchronization and Carrier Recovery for Digital modulation.	8
	Total	40

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Course Outcome:

Course Code	Course Name	Course Outcome	Details									
	Analog and Digital Communication	CO 1	Analyze and compare different analog modulation schemes for their efficiency and bandwidth									
		CO 2	Analyze the behavior of a communication system in presence of noise									
4EI4-07		CO 3	Investigate pulsed modulation system and analyze their system performance									
4E)		CO 4	Analyze different digital modulation schemes and can compute the bit error performance									
	V	CO 5	Design a communication system comprised of both analog and digital modulation techniques									

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	3		3		1				1		
[4-07] & Digital	CO 2	3	2		3		1						
4E14-07	CO 3	3	2		3		2						
4E14-07 Analog & Digita	CO 4	3	3		3		2				1		
A 9	CO 5	3	2	3	3		3			2	2		

3: Strongly

2: Moderate

1: Weak

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS 2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Introduction to the COURSE
Lecture 2	Review of signals and systems, Frequency domain representation of signals
Lecture 3	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 4	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 5	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 6	Angle Modulation, Representation of FM and PM signals
Lecture 7	Angle Modulation, Representation of FM and PM signals
Lecture 8	Spectral characteristics of angle modulated signals.
Lecture 9	Review of probability and random process
Lecture 10	Review of probability and random process
Lecture 11	Noise in amplitude modulation systems
Lecture 12	Noise in amplitude modulation systems
Lecture 13	Noise in Frequency modulation systems
Lecture 14	Pre-emphasis and Deemphasis
Lecture 15	Threshold effect in angle modulation
Lecture 16	Pulse modulation. Sampling
Lecture 17	Pulse Amplitude and Pulse code modulation (PCM)
Lecture 18	Pulse Amplitude and Pulse code modulation (PCM)
Lecture 19	Differential pulse code modulation
Lecture 20	Delta modulation
Lecture 21	Noise considerations in PCM
Lecture 22	Time Division multiplexing, Digital Multiplexers
Lecture 23	Elements of Detection Theory
Lecture 24	Optimum detection of signals in noise
Lecture 25	Coherent communication with waveforms- Probability of Error evaluations Academic Affair
	Rajasthan Technical University, 1

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS 2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Lecture 26	Coherent communication with waveforms- Probability of Error evaluations
Lecture 27	Baseband Pulse Transmission- Inter symbol Interference and Nyquist criterion
Lecture 28	Baseband Pulse Transmission- Inter symbol Interference and Nyquist criterion
Lecture 29	Pass band Digital Modulation schemes
Lecture 30	Phase Shift Keying
Lecture 31	Frequency Shift Keying
Lecture 32	Quadrature Amplitude Modulation
Lecture 33	Continuous Phase Modulation and Minimum Shift Keying.
Lecture 34	Digital Modulation tradeoffs
Lecture 35	Optimum demodulation of digital signals over band-limited channels
Lecture 36	Optimum demodulation of digital signals over band-limited channels
Lecture 37	Maximum likelihood sequence detection (Viterbi receiver)
Lecture 38	Equalization Techniques
Lecture 39	Synchronization and Carrier Recovery for Digital modulation
Lecture 40	Synchronization and Carrier Recovery for Digital modulation

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Assignments:

Assignment 1	Q1. Design Modulator and Demodulator of SSB-SC Modulation based on its mathematical expression.						
	Q2. Derive the figure of merit in a) FM Receiver b) PM Receiver						
	Q3. A Carrier signal $c(t) = 20 \cos(2\pi 10^6 t)$ is modulated by a message signal having three frequencies 5 KHz, 10 KHz & 20 KHz. The corresponding modulation indexes are 0.4, 0.5 & 0.6. Sketch the spectrum. Calculate bandwidth, power and efficiency.						
Assignment 2	Q1. Derive the expression for probability of error in ASK, FSK and PSK systems and compare them.						
	Q2. With block diagrams explain about DPCM & DM. also compare them.						
	 Q3. A message signal m(t) = 4 cos (2π10³t) is sampled at nyquist rate and transmitted through a channel using 3-bit PCM system. i. Calculate all the parameters of the PCM. ii. If the sampled values are 3.8, 2.1, 0.5, -1.7, -3.2 & -4 then determine the quantizer output, encoder output and quantization error per each sample. iii. Sketch the transfer characteristics of the quantizer. 						

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI4-21: Analog and Digital Communication Lab

Credit: 1.5 Max. Marks: 75(IA:45, ETE:30) 0L+0T+3P

Sr. No.	Name of Experiment
1.	Observe the Amplitude modulated wave form & measure modulation index and demodulation of AM signal.
2.	Harmonic analysis of Amplitude Modulated wave form.
3.	Generation & Demodulation of DSB – SC signal.
4.	Modulate a sinusoidal signal with high frequency carrier to obtain FM signal and demodulation of the FM signal.
5.	Verification of Sampling Theorem.
6.	To study & observe the operation of a super heterodyne receiver.
7.	PAM, PWM & PPM: Modulation and demodulation.
8.	To observe the transmission of four signals over a single channel using TDM-PAM method.
9.	To study the PCM modulation & demodulation and study the effect of channel like attenuation, noise in between modulator & demodulator through the experimental setup.
10.	To study the 4 channel PCM multiplexing & de-multiplexing in telephony system.
11.	To study the Delta & Adaptive delta modulation & demodulation and also study the effect of channel like attenuation, noise in between modulator & demodulator through the experimental setup.
12.	To perform the experiment of generation and study the various data formatting schemes (Unipolar, Bipolar, Manchester, AMI etc.)
13.	To perform the experiment of generation and detection of ASK, FSK, BPSK, DBPSK signals with variable length data pattern.

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Course Outcome:

Course Code	Course Name	Course Outcome	Details
		CO 1	Understand different analog modulation schemes and evaluate modulation index
	igital on Lab	CO 2	Able to understand the principle of superhetrodyne receiver
4EI4-21	Analog and Digita Communication La	CO 3	Develop time division multiplexing concepts in real time applications
,	Analo Comm	CO 4	Develop and able to comprehend different data formatting schemes
		CO 5	Comprehend and analyze the concepts of different digital modulation techniques in communication.

CO-PO Mapping:

	Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	al ,ab	CO 1	3	2		1								
1	and Digital nication La	CO 2	3	2	1									
4EI4-21	and nicat	CO 3	3	3	2	2	1							
4E Analog	Analog and Dig Communication	CO 4	3	3	2	2	1							
	Aı Co	CO 5	3	3	2	2	1							

3: Strongly

2: Moderate

1: Weak

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI4-22: Analog Circuits Lab

Credit: 1.5 Max. Marks: 75(IA:45, ETE:30) 0L+0T+3P

Sr. No.	Name of Experiment
1.	Study and implementation of Voltage Series and Current Series Negative Feedback Amplifier.
2.	Study and implementation of Voltage Shunt and Current Shunt Negative Feedback Amplifier.
3.	Plot frequency response of BJT amplifier with and without feedback in the emitter circuit and calculate bandwidth, gain bandwidth product with and without negative feedback.
4.	Study and implementation of series and shunt voltage regulators and calculate line regulation and ripple factor.
5.	Plot and study the characteristics of small signal amplifier using FET.
6.	Study and implementation of push pull amplifier. Measure variation of output power & distortion with load and calculate the efficiency.
7.	Study and implementation of Wein bridge oscillator and observe the effect of variation in oscillator frequency.
8.	Study and implementation of transistor phase shift oscillator and observe the effect of variation in R & C on oscillator frequency and compare with theoretical value.
9.	Study and implementation of the following oscillators and observe the effect of variation of capacitance on oscillator frequency: (a) Hartley (b) Colpitts.
10.	Study and implementation of the Inverting And Non-Inverting Operational Amplifier.
11.	Study and implementation of Summing, Scaling And Averaging of Operational Amplifier
12.	Implementation of active filters using OPAMP.

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Course Outcome:

Course Code	Course Name	Course Outcome	Details
Couc	Ttaile		Discuss and sharms the answering of a hingler impation
		CO 1	Discuss and observe the operation of a bipolar junction transistor and field-effect transistor in different region of operations.
	Lab	CO 2	Analyze and design of transistor Amplifier and Oscillators. Importance of negative feedback.
4E14-22	Analog Circuits Lab	CO 3	Analyze the frequency response of amplifiers and operational amplifier circuits. Develop an intuition for analog circuit behavior in both linear and nonlinear operation.
	Anal	CO 4	Design op-amps for specific gain, speed, or switching performance. Compensate operational amplifiers for stability.
		CO 5	Design and conduct experiments, interpret and analyze data, and report results.

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Lab	CO 1	3	2	1	2	2							
ts t	CO 2	2	3	1	2	3							
4EI4-22 g Circuits	CO 3	1	3	2	3	2							
4I Analog (CO 4	1	2	3	2	3							
An	CO 5	1	2	3	3	3							

3: Strongly 2: Moderate 1: Weak

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI4-23: Microcontrollers Lab

Max. Marks: 75(IA:45, ETE:30) Credit: 1.5 0L+0T+3P

Sr.	Name of Experiment
No.	
Follo	wing exercises has to be Performed on 8085
	Write a program for
1.	1.1 Multiplication of two 8 bit numbers
	1.2 Division of two 8 bit numbers
2.	Write a program to arrange a set of data in Ascending and Descending order.
3.	Write a program to find Factorial of a given number.
	Write a program to generate a Software Delay.
4.	4.1 Using a Register
	4.2 Using a Register Pair
8085	Interfacing Programs
5.	5.1 Write a program to Interface ADC with 8085.
	5.2 Write a program to interface Temperature measurement module with 8085.
6.	Write a program to interface Keyboard with 8085.
7.	Write a program to interface DC Motor and stepper motor with 8085.
Follo	wing exercises has to be Performed on 8051
8.	Write a program to convert a given Hex number to Decimal.
9.	Write a program to find numbers of even numbers and odd numbersamong 10 Numbers.
10.	Write a program to find Largest and Smallest Numbers among 10 Numbers.
11.	11.1 To study how to generate delay with timer and loop.
	11.2 Write a program to generate a signal on output pin using timer.
8051	Interfacing Programs
12	12.1 Write a program to interface Seven Segment Display with 8051.
	12.2 Write a program to interface LCD with 8051.
13	Write a program for Traffic light Control using 8051.
14	Write a program for Elevator Control using 8051.

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Course Outcome:

Course	Course	Course	Details						
Code	Name	Outcome	Dettinb						
	q	CO 1	Develop skills related to assembly level programming of microprocessors and microcontroller.						
	llers Lab	CO 2	Interpret the basic knowledge of microprocessor and microcontroller interfacing, delay generation, waveform generation and Interrupts.						
CO 3 Interfacing the external devices to the microcon and microprocessor to solve real time problems.									
1-23	Microcontrollers	CO 4	Illustrate functions of various general purpose interfacing devices.						
4EI4-23	2	CO 5	Develop a simple microcontroller and microprocessor based systems						

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Lab	CO 1	2	1	2	1	3							
	CO 2	3	2	1	2	1							
4EI4-23	CO 3	1	1	3	1	3							
4EI4-23 Microcontrollers	CO 4	2	2	1									
Mic	CO 5	1	1	3	2	2		2					

3: Strongly

2: Moderate

1: Weak

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

4EI4-24: Measurement & Instrumentation Lab

Max. Marks: 75(IA:45, ETE:30) Credit: 1.5 0L+0T+3P

Sr.	Contents
No.	
1.	Measure the low resistance by Kelvin's double bridge
2.	Calibrate an ammeter using D.C. slide wire potentiometer.
3.	Calibrate a wattmeter using Crompton's potentiometer
4.	Measure the power in 3-phase star connected load by two-wattmeter method at different values of load
	power factor.
5.	Calibrate a single-phase energy meter (Analog and Digital) by phantom loading at different power factor
	by
	a) Phase shifting transformer
	b) Auto transformer.
6.	Measure earth resistance using fall of potential method
7.	Plot the V-I characteristics of a solar panel.
8.	Measure low resistance using Crompton's potentiometer
9.	Measure unknown inductance using Anderson's bridge.
10.	Measure unknown frequency using Wein's Bridge
11.	Measure unknown capacitance using DeSauty Bridge.
12.	a) To see the burden effect on the performance of CT
	b) To measure phase angle and ratio error of CT.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA **SYLLABUS**

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electronics Instrumentation & Control)

Course Outcome:

Cour se Code	Course Name	Course Outcome	Details							
		CO 1	Understanding of the fundamentals of Electronic							
			Instrumentation. Explain and identify measuring							
	ab		instruments.							
	. & 1 Lab	CO 2	Able to measure resistance, inductance and capacitance							
4	entior		by various methods.							
4EI4-24	Measurement	CO 3	Design an instrumentation system that meets desired							
EI	ure		specifications and requirements.							
4	eas .um	CO 4	Design and conduct experiments, interpret and analyze							
	M		data, and report results.							
	In	CO 5	Explain the principle of electrical transducers.							
			Confidence to apply instrumentation solutions for given							
			industrial applications.							

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
qe	CO 1	3	2	1	2	2							
4 ent & ion La	CO 2	2	3	1	2	3							
4EI4-24 surement mentation	CO 3	1	3	2	3	2							
4EI4-24 Measurement Instrumentation	CO 4	1	2	3	2	3							
Ins	CO 5	1	2	3	3	3							

3: Strongly 2: Moderate 1: Weak