Scheme & Syllabus of

UNDERGRADUATE DEGREE COURSE

B.Tech. VII & VIII Semester

Electrical and Electronics Engineering

Rajasthan Technical University, Kota Effective from session: 2020 – 2021

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

Teaching & Examination Scheme B.Tech.: Electrical and Electronics Engineering 4th Year - VII Semester

SN	Category		Course	Hours per Week						Cr	
	omesge:y	Code	Name	L	т	P	Exm Hrs	IA	ET E	Total	
1		7EX5-11	Digital Signal Processing.								
2	PEC	7EX5-12	Digital Control System.	3	0	0	3	30	120	150	3
3		7EX5-13	Image Processing and Pattern Recognitation				_				
4	OE		Open Elective-I	3	0	0	3	30	120	150	3
			Sub total	6	0	0		60	240	300	6
			PRACTICAL & SESS	ION	AL						
5	PCC	7EX4-21	DBMS Lab	0	0	4	2	60	40	100	2
6	PCC	7EX4-22	Advanced Control System Lab	0	0	4	2	60	40	100	2
7	PSIT	7EX7-30	Industrial Training	1	0	0		75	50	125	2.5
8		7EX7-40	Seminar	2	0	0		60	40	100	2
9	SODECA	7EX8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			25	25	0.5
			Sub total	3	0	8		255	195	450	9
			TOTAL of VII SEMESTER	9	0	8		315	435	750	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

Teaching & Examination Scheme B.Tech.: Electrical and Electronics Engineering 4th Year - VIII Semester

SN	Category		Course	Hours per Week							Cr
		Code	Name	L	т	P	Exm Hrs	IA	ЕТЕ	Total	
1	PCC	8EX4-01	Digital Communication and Information Theory	3	0	0	3	30	120	150	3
2	OE		Open Elective-II	3	0	0	3	30	120	150	3
			Sub Total	6	0	0		60	240	300	6
			PRACTICAL & SESS	ION	IAL						
3	PCC	8EX4-21	Embedded Systems Lab	0	0	4		60	40	100	2
6	Project	8EX7-50	Project	3	0	0		210	140	350	7
7	SODECA	8EX8-00	SODECA	0	0	0		0	25	25	0.5
			Total	3	0	4		270	205	475	9.5
_			TOTAL of VII SEMESTER	9	0	4		330	445	775	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

List of	List of Open Electives for Electrical and Electronics Engineering							
Subject Code	Title	Subject Code	Title					
	Open Elective - I	3000	Open Elective - II					
7AG6-60.1	Human Engineering and Safety	8AG6-60.1	Energy Management					
7AG6-60.2	Environmental Engineering and Disaster Management	8AG6-60.2	Waste and By-product Utiliza- tion					
7AN6-60.1	Aircraft Avionic System	8AN6-60.1	Finite Element Methods					
7AN6-60.2	Non-Destructive Testing	8AN6-60.2	Factor of Human Interactions					
7CH6-60.1	Optimization Techniques	8CH6-60.1	Refinery Engineering Design					
7CH6-60.2	Sustainable Engineering	8CH6-60.2	Fertilizer Technology					
7CR6-60.1	Introduction to Ceramic Science & Technology	8CR6-60.1	Electrical and Electronic Ceramics					
7CR6-60.2	Plant, Equipment and Furnace Design	8CR6-60.2	Biomaterials					
7CE6-60.1	Environmental Impact Analysis	8CE6-60.1	Composite Materials					
7CE6-60.2	Disaster Management	8CE6-60.2	Fire and Safety Engineering					
7CS6-60.1	Quality Management/ISO 9000	8CS6-60.1	Big Data Analytics					
7CS6-60.2	Cyber Security	8CS6-60.2	IPR, Copyright and Cyber Law of India					
7EC6-60.1	Principle of Electronic communication	8EC6-60.1	Industrial and Biomedical applications of RF Energy					
7EC6-60.2	Micro and Smart System Technology	8EC6-60.2	Robotics and control					
7ME6-60.1	Finite Element Analysis	8ME6-60.1	Operations Research					
7ME6-60.2	Quality Management	8ME6-60.2	Simulation Modeling and Analysis					
7MI6-60.1	Rock Engineering	8MI6-60.1	Experimental Stress Analysis					
7MI6-60.2	Mineral Processing	8MI6-60.2	Maintenance Management					
7PE6-60.1	Pipeline Engineering	8PE6-60.1	Unconventional Hydrocarbon Resources					
7PE6-60.2	Water Pollution control Engineering	8PE6-60.2	Energy Management & Policy					
7TT6-60.1	Technical Textiles	8TT6-60.1	Material and Human Resource Management					
7TT6-60.2	Garment Manufacturing Technology	8TT6-60.2	Disaster Management					

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EX5-11: DIGITAL SIGNAL PROCESSING

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Discrete-time signals and systems	80
	Discrete time signals and systems: Sequences; representation of sig-	
	nals on orthogonal basis; Representation of discrete systems using	
	difference equations, Samplingand reconstruction of signals - aliasing;	
	Sampling theorem and Nyquist rate	
3	Z-transform	06
	z-Transform, Region of Convergence, Analysis of Linear Shift Invariant	
	systems using ztransform, Properties of z-transform for causal sig-	
	nals, Interpretation of stability in z-domain, Inverse z-transforms.	
4	Discrete Fourier Transform	10
	Frequency Domain Analysis, Discrete Fourier Transform (DFT), Prop-	
	erties of DFT,	
	Connvolution of signals, Fast Fourier Transform Algorithm, Parseval's	
	Identity,	
	Implementation of Discrete Time Systems	
5	Design of Digital filters	11
	Design of FIR Digital filters: Window method, Park-McClellan's me-	
	thod. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic	
	Approximations; Low-pass, Band-pass, Bandstop and High-pass fil-	
	ters.	
	Effect of finite register length in FIR filter design. Parametric and non-	
	parametric spectral estimation. Introduction to multi-rate signal	
	processing	
6	Applications of Digital Signal Processing	06
	Correlation Functions and Power Spectra, Stationary Processes, Op-	
	timal filtering using	
	ARMA Model, Linear Mean-Square Estimation, Wiener Filter.	-
	TOTAL	

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

Tex	t/Reference Books
1	S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw
	Hill, 2011.
2	A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", Prentice
	Hall, 1989.
3	J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algo-
	rithms And Applications", Prentice Hall, 1997.
4	L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal
	Processing", Prentice Hall, 1992.
5	J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
6	D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing",
	John Wiley & Sons, 1988.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EX5-12: DIGITAL CONTROL SYSTEM

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

01.	Dit i Crim Exam.	, iiouis
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Discrete Representation of Continuous Systems Basics of Digital Control Systems. Discrete representation of continuous systems. Sample and hold circuit. Mathematical Modelling of sample and hold circuit. Effects of Sampling and Quantization. Choice of sampling frequency. ZOH equivalent.	05
3	Discrete System Analysis Z-Transform and Inverse Z Transform for analyzing discrete time systems. Pulse Transfer function. Pulse transfer function of closed loop systems. Mapping from s-plane to z plane. Solution of Discrete time systems. Time response of discrete time system.	06
4	Stability of Discrete Time System Stability analysis by Jury test. Stability analysis using bilinear transformation. Design of digital control system with dead beat response. Practical issues with dead beat response design.	06
5	State Space Approach for discrete time systems State space models of discrete systems, State space analysis. Lyapunov Stability. Controllability, reach-ability, Reconstructibility and observability analysis. Effect of pole zero cancellation on the controllability & observability	06
6	Design of Digital Control System Design of Discrete PID Controller, Design of discrete state feedback controller. Design of set point tracker. Design of Discrete Observer for LTI System. Design of Discrete compensator.	05
7	Discrete output feedback control Design of discrete output feedback control. Fast output sampling (FOS) and periodic output feedback controller design for discrete time systems	06
	TOTAL	36

Text/Reference Books				
1	K. Ogata, "Digital Control Engineering", Prentice Hall, Englewood Cliffs, 1995.			
2	M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.			
3	G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic			
	Systems", Addison-Wesley, 1998.			
4	B.C. Kuo, "Digital Control System", Holt, Rinehart and Winston, 1980.			

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EX5-13: IMAGE PROCESSING AND PATTERN RECOGNITION

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

	End leim Exam. S	ilouis
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Imaging in ultraviolet and visible band: Fundamental steps in image	7
	processing. Components inimage processing. Image perception in eye,	
	light and electromagnetic spectrum, Image sensing and acquisition using sensor array.	
3	Digital Image Fundamentals: Image sampling and quantization,	8
	Representing digital images, Spatial and gray-level resolution, Aliasing and Moire patterns, zooming and Shrinking digital images.	
4	Image Restoration: Image restoration model, Noise Models, Spatial and	8
-	frequency properties of noise, noise probability density functions.	8
	Noise - only spatial filter, Mean filter Statistic filter and adaptive filter, Frequency domain filters - Band reject filter, Band pass filter and Notch filter.	
5	Image Compression: Compression Fundamentals - Coding Redundancy, Interpixel redundancy, Psycho visual redundancy and Fidelity criteria. Image Compression models, Source encoder and decoder.	8
	Channel encoder and decoder, Lossy compression and compression	
	standards. Color space formats, scaling methodologies (like horizontal, vertical up/down scaling). Display format (VGA, NTSC, P AL).	
6	Expert System and Pattern Recognition: Use of computers in problem	8
	solving, information representation, searching, theorem proving, and pattern matching with substitution.	
	Methods for knowledge representation, searching, spatial, temporal and	
	common sense reasoning, and logic and probabilistic inferencing. Applications in expert systems and robotics.	
	TOTAL	

Tex	Text/Reference Books				
1	Rafael C. Gonzalez: Digital Image Processing, Pearson Education, Asia. 2009				
2	Vipula Singh: Digital Image Processing, Elesvier. 2013				
3	Nick Effard: Digital Image Processing, Pearson Education, Asia. 2000				
4	Jain A. K.: Digital Image Processing, Prentice Hall of India 1989				
5	Shinghal: Pattern Recognition- Techniques and Applications, Oxford. 2006 Jaya-				
	raman: Digital Image Processing, TMH, 2011				

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EX4-21:DATA BASED MANAGEMENT SYSTEM LAB

Credit: 2 Max. Marks: 100(IA:60, ETE:40)

OL+OT+4P

SN	Contents
1	Designing database and constraints using DDL statements.
2	Experiments for practicing SQL query execution on designed database.
3	Database connectivity using JDBC/ODBC.
4	Features of embedded SQL.
5	Designing front end in HLL and accessing data from backend database.
6	Designing simple projects using front end-back end programming.
7	Project for generating Electricity Bills
8	Project for managing student's attendance/marks details.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EE4-22: Advanced Control System Lab

Credit: 2 Max. Marks: 100(IA:60, ETE:40)
0L+0T+4P

SN	Contents
1	Determination of transfer functions of DC servomotor and AC servomotor.
2	Time domain response of rotary servo and Linear servo (first order and second
	order) systems using MATLAB/Simulink.
3	Simulate Speed and position control of DC Motor

- Frequency response of small-motion, linearized model of industrial robot (first and second order) system using MATLAB.
- **5** Characteristics of PID controllers using MATLAB. Design and implementation of P, PI and PID Controllers for temperature and level control systems;
- **6** Design and implement closed loop control of DC Motor using MATLAB/Simulink and suitable hardware platform.
- 7 Implementation of digital controller using microcontroller;
- **8** Design and implementation of controller for practical systems inverted pendulum system.
- **9** To design and implement control action for maintaining a pendulum in the upright position (even when subjected to external disturbances) through LQR technique in an Arduino Mega.
- The fourth order, nonlinear and unstable real-time control system (Pendulum & Cart Control System)
- **11** Mini project on real life motion control system

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

8EX4-01: DIGITAL COMMUNICATION AND INFORMATION THEORY

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

3L	or or End Term Exam.) IIUuIS
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	PCM & DELTA Modulation Systems: PCM and delta modulation, quanti-	08
	zation noise in PCM and delta modulation. Signal-to-noise ratio in PCM	
	and delta modulation,T1 Carrier System, Comparison of PCM and DM.	
	Adaptive delta Modulation. Bit, word and frame synchronization,	
	Matched filter detection.	
3	Digital Modulation Techniques: Various techniques of phase shift, am-	07
	plitude shift and frequency shift keying. Minimum shift keying. Modula-	
	tion & Demodulation.	
4	Error Probability in Digital Modulation: Calculation of error probabili-	08
	ties for PSK, ASK, FSK & MSK techniques.	
5	Information Theory: Amount of Information, Average Information, Entropy,	08
	Information rate, Increase in Average information per bit by coding, Shannon's	
	Theorem and Shannon's bound	
	Capacity of a Gaussian Channel, BW-S/N trade off, Orthogonal signal	
	transmission.	
6	Coding: Coding of Information, Hamming code, Single Parity-Bit Code,	08
	Linear Block code, cyclic code &convolution code.	
	TOTAL	40

Text/Reference Books	
1	Sklar: Digital Communication, Pearson Education. 2009
2	R. N. Mutagi: Digital Communication, 2nd ed., Oxford. 2013
3	P. Ramakrishna Rao: Communication Systems, MGH. 2013
4	H. Taub & D.L. Schilling: Principles of Communication Systems, MGH. 2008
5	Proakis: Digital Communication, MGH. 2008
6	P. Chakrabarti: Principles of Digital Communications, Danpatrai & Sons. 1999
7	K. Sam Shanmugam: Digital and Analog Communication System, John Wiley
	Sons. 2006
8	Lathi, B. P.: Modern Digital & Analog Communication System, Oxford Press. 2009

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

8EX4-21: EMBEDDED SYSTEM LAB

Credit: 1 Max. Marks: 50(IA:30, ETE:20)
0L+0T+2P

SN	Contents
1	Introduction to Embedded Systems and their working.
2	Data transfer instructions using different addressing modes and block transfer.
3	Write a program for Arithmetic operations in binary and BCD-addition, subtraction, multiplication and division and display.
4	Interfacing D/A converter & Write a program for generation of simple waveforms such as triangular, ramp, Square etc.
5	Write a program to interfacing IR sensor to realize obstacle detector.
6	Write a program to implement temperature measurement and displaying the
	same on an LCD display.
7	Write a program for interfacing GAS sensor and perform GAS leakage detection.
8	Write a program to design the Traffic Light System and implement the same us-
	ing suitable hardware.
9	Write a program for interfacing finger print sensor.
10	Write a program for Master Slave Communication between using suitable hard-
	ware and using SPI
11	Write a program for variable frequency square wave generation using with suita-
	ble hardware.
12	Write a program to implement a PWM based speed controller for 12 V/24V DC
	Motor incorporating a suitable potentiometer to provide the set point.