Scheme & Syllabus of

UNDERGRADUATE DEGREE COURSE

B.Tech. VII & VIII Semester

Electrical and Electronics Engineering

Rajasthan Technical University, Kota Effective from session: 2020 – 2021

Teaching & Examination Scheme B.Tech. : Electrical and Electronics Engineering 4th Year - VII Semester

SN	Category		Course	Ho	urs Vee	per k	Marks			Cr	
		Code	Name	L	т	Р	Exm Hrs	IA	ET E	Total	
1		7EX5-11	Digital Signal Processing.								
2	PEC	7EX5-12	Digital Control System.	3	0	0	3	30	70	100	3
3		7EX5-13	Image Processing and Pattern Recognitation								
4	OE		Open Elective-I	3	0	0	3	30	70	100	3
			Sub total	6	0	0		60	140	200	6
			PRACTICAL & SESS	IONA	L						
5	PCC	7EX4-21	DBMS Lab	0	0	4	2	60	40	100	2
6	PCC	7EX4-22	Advanced Control System Lab	0	0	4	2	60	40	100	2
7	PSIT	7EX7-30	Industrial Training	1	0	0		60	40	100	2.5
8		7EX7-40	Seminar	2	0	0		60	40	100	2
9	SODECA	7EX8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			100	100	0.5
			Sub total	3	0	8		240	260	500	9
			TOTAL of VII SEMESTER	9	0	8		300	400	700	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Teaching & Examination Scheme B.Tech. : Electrical and Electronics Engineering 4th Year - VIII Semester

SN	Category		Course	F pe:	lours r Week		Marks				Cr
	5 7	Code	Name	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	PCC	8EX4-01	Digital Communication and Information Theory	3	0	0	3	30	70	100	З
2	OE		Open Elective-II	3	0	0	3	30	70	100	3
			Sub Total	6	0	0		60	140	200	6
			PRACTICAL & SESS	ION	AL						
3	PCC	8EX4-21	Embedded Systems Lab	0	0	4		60	40	100	2
6	Project	8EX7-50	Project	3	0	0		60	40	100	7
7	SODECA	8EX8-00	SODECA	0	0	0			100	100	0.5
			Total	3	0	4		120	180	300	9.5
			TOTAL of VII SEMESTER	9	0	4		180	320	500	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

List of	List of Open Electives for Electrical and Electronics Engineering									
Subject Code	Title		Subject Code	Title						
	Open Elective - I			Open Elective - II						
7AG6-60.1	Human Engineering and Safety		8AG6-60.1	Energy Management						
7AG6-60.2	Environmental Engineering and Disaster Management		8AG6-60.2	Waste and By-product Utiliza- tion						
7AN6-60.1	Aircraft Avionic System		8AN6-60.1	Finite Element Methods						
7AN6-60.2	Non-Destructive Testing		8AN6-60.2	Factor of Human Interactions						
7CH6-60.1	Optimization Techniques		8CH6-60.1	Refinery Engineering Design						
7CH6-60.2	Sustainable Engineering		8CH6-60.2	Fertilizer Technology						
7CR6-60.1	Introduction to Ceramic Science & Technology		8CR6-60.1	Electrical and Electronic Ce- ramics						
7CR6-60.2	Plant, Equipment and Fur- nace Design		8CR6-60.2	Biomaterials						
7CE6-60.1	Environmental Impact Analysis		8CE6-60.1	Composite Materials						
7CE6-60.2	Disaster Management		8CE6-60.2	Fire and Safety Engineering						
7CS6-60.1	Quality Management/ISO 9000		8CS6-60.1	Big Data Analytics						
7CS6-60.2	Cyber Security		8CS6-60.2	IPR, Copyright and Cyber Law of India						
7EC6-60.1	Principle of Electronic communication		8EC6-60.1	Industrial and Biomedical ap- plications of RF Energy						
7EC6-60.2	Micro and Smart System Technology		8EC6-60.2	Robotics and control						
7ME6-60.1	Finite Element Analysis		8ME6-60.1	Operations Research						
7ME6-60.2	Quality Management		8ME6-60.2	Simulation Modeling and Anal- ysis						
7MI6-60.1	Rock Engineering		8MI6-60.1	Experimental Stress Analysis						
7MI6-60.2	Mineral Processing		8MI6-60.2	Maintenance Management						
7PE6-60.1	Pipeline Engineering		8PE6-60.1	Unconventional Hydrocarbon Resources						
7PE6-60.2	Water Pollution control En- gineering		8PE6-60.2	Energy Management & Policy						
7TT6-60.1	Technical Textiles		8TT6-60.1	Material and Human Resource Management						
7TT6-60.2	Garment Manufacturing		8TT6-60.2	Disaster Management						

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EX5-11: DIGITAL SIGNAL PROCESSING

Credit: 3 Max. Marks: 100		TE:70)
<u>_3L+(</u>	DT+OP End Term Exam: 3	Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Discrete-time signals and systems	08
	Discrete time signals and systems: Sequences; representation of sig-	
	nals on orthogonal basis; Representation of discrete systems using	
	difference equations, Samplingand reconstruction of signals - aliasing;	
	Sampling theorem and Nyquist rate	
3	Z-transform	06
	z-Transform, Region of Convergence, Analysis of Linear Shift Invariant	
	systems using ztransform, Properties of z-transform for causal sig-	
	nals, Interpretation of stability in z-domain, Inverse z-transforms.	
4	Discrete Fourier Transform	10
	Frequency Domain Analysis, Discrete Fourier Transform (DFT), Prop-	
	erties of DFT,	
	Connvolution of signals, Fast Fourier Transform Algorithm, Parseval's	
	Identity,	
	Implementation of Discrete Time Systems	
5	Design of Digital filters	11
	Design of FIR Digital filters: Window method, Park-McClellan's me-	
	thod. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic	
	Approximations; Low-pass, Band-pass, Bandstop and High-pass fil-	
	ters.	
	Effect of finite register length in FIR filter design. Parametric and non-	
	parametric spectral estimation. Introduction to multi-rate signal	
	processing	
6	Applications of Digital Signal Processing	06
	Correlation Functions and Power Spectra, Stationary Processes, Op-	
	timal filtering using	
	ARMA Model, Linear Mean-Square Estimation, Wiener Filter.	
	TOTAL	

Tex	t/Reference Books
1	S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw
	Hill, 2011.
2	A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", Prentice
	Hall, 1989.
3	J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algo-
	rithms And Applications", Prentice Hall, 1997.
4	L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal
	Processing", Prentice Hall, 1992.
5	J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
6	D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing",
	John Wiley & Sons, 1988.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EX5-12: DIGITAL CONTROL SYSTEM

Cre	dit: 3 Max. Marks: 100(IA:30, E'	ГЕ:70)
3L+(DT+OP End Term Exam: 3	Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Discrete Representation of Continuous Systems Basics of Digital Con- trol Systems. Discrete representation of continuous systems. Sample and hold circuit. Mathematical Modelling of sample and hold circuit. Effects of Sampling and Quantization. Choice of sampling frequency. ZOH equivalent.	05
3	Discrete System Analysis Z-Transform and Inverse Z Transform for analyzing discrete time systems. Pulse Transfer function. Pulse transfer function of closed loop systems. Mapping from s-plane to z plane. Solu- tion of Discrete time systems. Time response of discrete time system.	06
4	Stability of Discrete Time System Stability analysis by Jury test. Stabil- ity analysis using bilinear transformation. Design of digital control sys- tem with dead beat response. Practical issues with dead beat response design.	06
5	State Space Approach for discrete time systems State space models of discrete systems, State space analysis. Lyapunov Stability. Controlla- bility, reach-ability, Reconstructibility and observability analysis. Effect of pole zero cancellation on the controllability & observability	06
6	Design of Digital Control System Design of Discrete PID Controller, De- sign of discrete state feedback controller. Design of set point tracker. Design of Discrete Observer for LTI System. Design of Discrete compen- sator.	05
7	Discrete output feedback control Design of discrete output feedback control. Fast output sampling (FOS) and periodic output feedback con- troller design for discrete time systems	06
	TOTAL	36

Tex	Γext/Reference Books					
1	K. Ogata, "Digital Control Engineering", Prentice Hall, Englewood Cliffs, 1995.					
2	M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.					
3	G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic					
	Systems", Addison-Wesley, 1998.					
4	B.C. Kuo, "Digital Control System", Holt, Rinehart and Winston, 1980.					

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EX5-13: IMAGE PROCESSING AND PATTERN RECOGNITION

Max. Marks: 100(IA:30, ETE:70)

3L+(OT+OP End Term Exam: 3	Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Imaging in ultraviolet and visible band: Fundamental steps in image processing. Components inimage processing. Image perception in eye, light and electromagnetic spectrum, Image sensing and acquisition using sensor array.	7
3	Digital Image Fundamentals: Image sampling and quantization, Representing digital images, Spatial and gray-level resolution, Aliasing and Moiré patterns, zooming and Shrinking digital images.	8
4	 Image Restoration: Image restoration model, Noise Models, Spatial and frequency properties of noise, noise probability density functions. Noise - only spatial filter, Mean filter Statistic filter and adaptive filter, Frequency domain filters - Band reject filter, Band pass filter and Notch filter. 	8
5	 Image Compression: Compression Fundamentals - Coding Redundancy, Interpixel redundancy, Psycho visual redundancy and Fidelity criteria. Image Compression models, Source encoder and decoder. Channel encoder and decoder, Lossy compression and compression standards. Color space formats, scaling methodologies (like horizontal, vertical up/down scaling). Display format (VGA, NTSC, P AL). 	8
6	 Expert System and Pattern Recognition: Use of computers in problem solving, information representation, searching, theorem proving, and pattern matching with substitution. Methods for knowledge representation, searching, spatial, temporal and common sense reasoning, and logic and probabilistic inferencing. Applications in expert systems and robotics. 	8
	TOTAL	

Text/Reference Books

	•
1	Rafael C. Gonzalez: Digital Image Processing, Pearson Education, Asia. 2009
2	Vipula Singh: Digital Image Processing, Elesvier. 2013
3	Nick Effard: Digital Image Processing, Pearson Education, Asia. 2000
4	Jain A. K.: Digital Image Processing, Prentice Hall of India 1989
5	Shinghal: Pattern Recognition- Techniques and Applications, Oxford. 2006 Jaya-
	raman: Digital Image Processing, TMH. 2011

7EX4-21:DATA BASED MANAGEMENT SYSTEM LAB

Credit: 2

Max. Marks: 100(IA:60, ETE:40)

0L+(J1+4P
SN	Contents
1	Designing database and constraints using DDL statements.
2	Experiments for practicing SQL query execution on designed database.
3	Database connectivity using JDBC/ODBC.
4	Features of embedded SQL.
5	Designing front end in HLL and accessing data from backend database.
6	Designing simple projects using front end-back end programming.
7	Project for generating Electricity Bills
8	Project for managing student's attendance/marks details.

7EE4-22: Advanced Control System Lab

Credit: 2

Max. Marks: 100(IA:60, ETE:40)

OLIN	
SN	Contents
1	Determination of transfer functions of DC servomotor and AC servomotor.
2	Time domain response of rotary servo and Linear servo (first order and second order) systems using MATLAB/Simulink.
3	Simulate Speed and position control of DC Motor
4	Frequency response of small-motion, linearized model of industrial robot (first and second order) system using MATLAB.
5	Characteristics of PID controllers using MATLAB. Design and implementation of P, PI and PID Controllers for temperature and level control systems;
6	Design and implement closed loop control of DC Motor using MATLAB/Simulink and suitable hardware platform.
7	Implementation of digital controller using microcontroller;
8	Design and implementation of controller for practical systems - inverted pendu- lum system.
9	To design and implement control action for maintaining a pendulum in the upright position (even when subjected to external disturbances) through LQR technique in an Arduino Mega.
10	The fourth order, nonlinear and unstable real-time control system (Pendulum & Cart Control System)
11	Mini project on real life motion control system

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

8EX4-01: DIGITAL COMMUNICATION AND INFORMATION THEORY

Max. Marks: 100(IA:30, ETE:70)

3L+(JI+OP End Term Exam: 3	Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	PCM & DELTA Modulation Systems: PCM and delta modulation, quanti-	08
	zation noise in PCM and delta modulation. Signal-to-noise ratio in PCM	
	and delta modulation, T1 Carrier System, Comparison of PCM and DM.	
	Adaptive delta Modulation. Bit, word and frame synchronization,	
	Matched filter detection.	
3	Digital Modulation Techniques: Various techniques of phase shift, am-	07
	plitude shift and frequency shift keying. Minimum shift keying. Modula-	
	tion & Demodulation.	
4	Error Probability in Digital Modulation: Calculation of error probabili-	08
	ties for PSK, ASK, FSK & MSK techniques.	
5	Information Theory: Amount of Information, Average Information, Entropy,	08
	Information rate, Increase in Average information per bit by coding, Shannon's	
	Theorem and Shannon's bound	
	Capacity of a Gaussian Channel, BW-S/N trade off, Orthogonal signal	
	transmission.	
6	Coding: Coding of Information, Hamming code, Single Parity-Bit Code,	08
	Linear Block code, cyclic code & convolution code.	
	TOTAL	40

Text/Reference Books	
1	Sklar: Digital Communication, Pearson Education. 2009
2	R. N. Mutagi: Digital Communication, 2nd ed., Oxford. 2013
3	P. Ramakrishna Rao: Communication Systems, MGH. 2013
4	H. Taub & D.L. Schilling: Principles of Communication Systems, MGH. 2008
5	Proakis: Digital Communication, MGH. 2008
6	P. Chakrabarti: Principles of Digital Communications, Danpatrai & Sons. 1999
7	K. Sam Shanmugam: Digital and Analog Communication System, John Wiley
	Sons. 2006
8	Lathi, B. P.: Modern Digital & Analog Communication System, Oxford Press. 2009

8EX4-21: EMBEDDED SYSTEM LAB

Credit: 1

Max. Marks: 100(IA:60, ETE:40)

SN	Contents
1	Introduction to Embedded Systems and their working.
2	Data transfer instructions using different addressing modes and block transfer.
3	Write a program for Arithmetic operations in binary and BCD-addition, subtrac- tion, multiplication and division and display.
4	Interfacing D/A converter & Write a program for generation of simple waveforms such as triangular, ramp, Square etc.
5	Write a program to interfacing IR sensor to realize obstacle detector.
6	Write a program to implement temperature measurement and displaying the same on an LCD display.
7	Write a program for interfacing GAS sensor and perform GAS leakage detection.
8	Write a program to design the Traffic Light System and implement the same us- ing suitable hardware.
9	Write a program for interfacing finger print sensor.
10	Write a program for Master Slave Communication between using suitable hard- ware and using SPI
11	Write a program for variable frequency square wave generation using with suitable hardware.
12	Write a program to implement a PWM based speed controller for 12 V/24V DC Motor incorporating a suitable potentiometer to provide the set point.