Scheme & Syllabus of UNDERGRADUATE DEGREE COURSE

B.Tech. VII & VIII Semester

Chemical Engineering

Rajasthan Technical University, Kota Effective from session: 2020-21

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Chemical Engineering)

Teaching & Examination Scheme
B. Tech.: Chemical Engineering
4thYear – VII Semester

			THEO	RY							
SN	Categ	Course		Contact hrs/week			Marks				Cr
	ory	Code	Title	L	T	P	Exm Hrs	IA	ЕТЕ	Total	
1	PCC	7CH4-01	Transport Phenomena	3	0	0	3	30	70	100	3
2	OE		Open Elective I	3	0	0	3	30	70	100	3
			Sub Total	06	0	0		60	140	200	6
	1	T	PRACTICAL &	SES	SION	IAL	T		ı	1 1	
3		7CH4-21	Transport Phenomena	0	0	2		60	40	100	1
4	PCC	7CH4-22	Energy Resources Utilisation	0	0	2		60	40	100	1
5		7CH4-23	Process Design and Techno-Feasible Studies	0	0	4		60	40	100	2
6	DOM	7CH7-30	Industrial Training	1	0	0		60	40	100	2.5
7	PSIT	7CH7-40	Seminar	2	0	0		60	40	100	2
8	SODE CA	7CH8-00	Social Outreach, Discipline & Extra Curricular Activities						100	100	0.5
			Sub- Total	3		8		300	400	600	9
		TOT	AL OF VII SEMEESTER	9	0	8		360	540	800	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Chemical Engineering)

Teaching & Examination Scheme
B. Tech.: Chemical Engineering
4th Year – VIII Semester

			THEO	RY							
SN	Categ	Course		Contact hrs/week			Marks				Cr
	ory	Code	Title	L	T	P	Exm Hrs	IA	ЕТЕ	Total	
1	PCC	8CH4-01	Process Modelling and Simulation	3	0	0	3	30	70	100	3
2	OE		Open Elective II	3	0	0	3	30	70	100	3
			Sub Total	6	0	0		60	140	200	6
	T		PRACTICAL &	SES	SIOI	IAL	T	T	I	1	
3		8CH4-21	Process Modelling and Simulation	0	0	2		60	40	100	1
4	PCC	8CH4-22	Comprehensive Study of Chemical Engineering	0	0	2		60	40	100	1
5	PSIT	8CH7-50	Project	3	0	0		60	40	100	7
6	SODE CA	8CH8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			100	100	0.5
			Sub- Total	3		4		180	220	400	9.5
		TOT	AL OF VIII SEMEESTER	9	0	4		240	360	600	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Chemical Engineering)

List of Open Electives for Chemical Engineering								
Subject Code	Title		Subject Code	Title				
	Open Elective - I			Open Elective - II				
7AG6-60.1	Human Engineering and Safety		8AG6-60.1	Energy Management				
7AG6-60.2	Environmental Engineering and Disaster Management		8AG6-60.2	Waste and By-product Utilization				
7AN6-60.1	Aircraft Avionic System		8AN6-60.1	Finite Element Methods				
7AN6-60.2	Non-Destructive Testing		8AN6-60.2	Factor of Human Interactions				
7CR6-60.1	Introduction to Ceramic Science & Technology		8CR6-60.1	Electrical and Electronic Ceramics				
7CR6-60.2	Plant, Equipment and Furnace Design		8CR6-60.2	Biomaterials				
7CE6-60.1	Environmental Impact Analysis		8CE6-60.1	Composite Materials				
7CE6-60.2	Disaster Management		8CE6-60.2	Fire and Safety Engineering				
7CS6-60.1	Quality Management/ISO 9000		8CS6-60.1	Big Data Analytics				
7CS6-60.2	Cyber Security		8CS6-60.2	IPR, Copyright and Cyber Law of India				
7EE6-60.1	Electrical Machines and Drives		8EE6-60.1	Energy Audit and Demand side Management				
7EE6-60.2	Power Generation Sources.		8EE6-60.2	Soft Computing				
7EC6-60.1	Principle of Electronic communication		8EC6-60.1	Industrial and Biomedical applications of RF Energy				
7EC6-60.2	Micro and Smart System Technology		8EC6-60.2	Robotics and control				
7ME6-60.1	Finite Element Analysis		8ME6-60.1	Operations Research				
7ME6-60.2	Quality Management		8ME6-60.2	Simulation Modeling and Analysis				
7MI6-60.1	Rock Engineering		8MI6-60.1	Experimental Stress Analysis				
7MI6-60.2	Mineral Processing		8MI6-60.2	Maintenance Management				
7PE6-60.1	Pipeline Engineering		8PE6-60.1	Unconventional Hydrocarbon Resources				
7PE6-60.2	Water Pollution control Engineering		8PE6-60.2	Energy Management & Policy				
7TT6-60.1	Technical Textiles		8TT6-60.1	Material and Human Resource Management				
7TT6-60.2	Garment Manufacturing Technology		8TT6-60.2	Disaster Management				

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Chemical Engineering)

7CH4-01: Transport Phenomena

Credit: 3 Max. Marks: 100(IA:30, ETE:70)
3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours					
1	Introduction: Objective, scope and outcome of the course.	1					
2	Similarity in momentum, heat and mass-transport - Newton's laws						
	of viscosity.						
	Fourier's laws of conduction and Fick's laws of diffusion, Flux-	9					
	transport property relationships.	9					
	Estimation of transport properties measurement and correlations,						
	velocity distribution in Laminar flow of falling film.						
3	Flow over an inclined plane, a circular tube an annulus and						
	between two parallel plates.						
	Shell balance approach for developing equations of change for						
	momentum, heat and mass transport.						
4	Transport equations in turbulent flow and equations for turbulent						
	fluxes. Velocity, Temperature and concentration profiles for						
	laminar and turbulent flow conditions.	10					
	Temperature and concentration profiles for conductive and						
	convective transport in solids and fluids.						
5	Macroscopic momentum and heat balance equations, Kinetic						
	energy calculations, Constant area and variable area flow	10					
	problems.	10					
	Flow through bends, time determination for emptying of vessels.						
	Total	40					

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Chemical Engineering)

7CH4-21: Transport Phenomena

Credit: 1 Max. Marks:100(IA:60, ETE:40)

0L+0T+2P

Contents

- 1. Study of momentum transport problems with shell balance approach.
- 2. Study of heat transport problems with shell balance approach.
- 3. Study of mass transport problems with shell balance approach.
- 4. Development of equations for turbulent fluxes. Velocity, Temperature and concentration profiles for laminar and turbulent flow conditions.
- 5. Development of transport equations in turbulent flow.
- 6. Solution of problems related to constant area and variable area flow problems.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Chemical Engineering)

7CH4-22: Energy Resources Utilisation

Credit: 1 OL+OT+2P

Contents

- 1. Basic concepts of demand, supply and pricing; price and output determination under perfect competition, derivation of the supply function, price and output determination under monopoly, oligopoly, and monopolistic competition.
- 2. Energy and society: Social, economic, political and environmental dimensions of energy.
- 3. Major types and sources of energy at the global and at the national level.
- 4. Reserves and resources of petroleum, coal and nuclear minerals: Globally and in India.
- 5. Other resources of energy: Hydroelectric power, solar energy, wind, wave, and biomass based energy.
- 6. Energy sources and power generation: Thermal, nuclear, hydroelectric, solar, wind and wave; relative merits and demerits including conversion efficiency, generation cost and environmental impact, clean coal initiatives.
- 7. Power transmission and distribution.
- 8. Carbon sequestration, coal gasification, CBM, Shale gas, gas hydrates: current status and future prospects.
- 9. Solar energy, hydrogen energy, and fuel cells: current status and future prospects.
- 10. Carbon credits and its impact on hydrocarbon business.
- 11. International oil markets, developments of Indian oil industry.
- 12. NELP (New Exploration Licensing Policy), Mines rules and regulations.
- 13. Pipelines: Current status and future prospects.
- 14. LNG, CNG and other forms of natural gas: global and Indian scenario.
- 15. Global energy politics.

7CH4-23: Process Design and Techno-Feasible Studies

7CH7-30: Industrial Training

7CH7-40: Seminar

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Max. Marks:100(IA:60, ETE:40)

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Chemical Engineering)

7CH8-00: Social Outreach, Discipline & Extra Curricular Activities

8CH4-01: Process Modelling and Simulation

Credit: 3 Max. Marks: 100(IA:30, ETE:70)
3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	The role of analysis: Chemical engineering problems, basic concepts of analysis; the analysis process, simple example of estimating an order, source of the model equations. Conservation equations, constitutive equations, control volumes, dimensional analysis, system of units, dimensional consistency in mathematical descriptions, dimensional analysis and Constitutive relationships, final observations.	9
3	Non-Reacting Liquid Systems: Introduction, equation of continuity, simple mass balance, application of the model equations, component mass balances. Model behavior: Steady state behavior, un-steady state behavior, density assumption, numerical integration methods of ordinary differential equation.	10
4	Reacting Liquid Systems: Introduction, basic model equations for a tank-type reactor, reaction rate, batch reactor, pseudo first-order reactions, reversible reactions, multiple reactions. Consecutive reactions, parallel reactions, complex reactions, constant density assumption, order and stoichiometry.	10
5	Treatment of experimental data: Introduction, criteria for Best Fit, Best Slope-I, Best straight line. Fitting a quadratic, simulation examples of gravity fluid flow, heat and mass transfer. Dynamic modelling of simple processes, sequential, simultaneous modular and equation oriented approaches. Computer programming of various iterative convergence methods such as Newton- Raphson, false position, Muller methods.	10
	Total	40

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Chemical Engineering)

8CH6-13: Process Modelling and Simulation

Credit: 1 Max. Marks: 100(IA:60, ETE:40)

0L+0T+2P

Contents

- 1. Simulation of gravity flow tank by Euler Method
- 2. Simulation of gravity flow tank by Range Kutta Method
- 3. Simulation of three CSTR in series by Range Kutta method
- 4. Simulation of three CSTR in series by Euler method
- 5. Simulation of three CSTR in series with feedback -loop by Euler method
- 6. Modelling a batch reactor-verification of 1st and 2nd order rate kinetics.
- 7. Counter current double pipe heat exchanger modelling-data analysis by iterative methods
- 8. Simulation of a distillation column-binary systems, equi-molal overflow, constant relative, volatility.

8CH4-22: Comprehensive Study of Chemical Engineering

8CH7-50: Project

8CH8-00: Social Outreach, Discipline & Extra Curricular Activities