Teaching and Examination Scheme

I Semester: B. Tech
Common to all branches of UG Engineering & Technology

<table>
<thead>
<tr>
<th>SN</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Marks</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BSC</td>
<td>1FY2-01</td>
<td>Engineering Mathematics-I</td>
<td>3-1-</td>
<td>30-70</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>BSC</td>
<td>1FY2-02/1FY2-03</td>
<td>Engineering Physics/Engineering Chemistry</td>
<td>3-1-</td>
<td>30-70</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>HSMC</td>
<td>1FY1-04/1FY1-05</td>
<td>Communication Skills/Human Values</td>
<td>2-1-</td>
<td>30-70</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>ESC</td>
<td>1FY3-06/1FY3-07</td>
<td>Programming for Problem Solving/Basic Mechanical Engineering</td>
<td>2-1-</td>
<td>30-70</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>ESC</td>
<td>1FY3-08/1FY3-09</td>
<td>Basic Electrical Engineering/Basic Civil Engineering</td>
<td>2-1-</td>
<td>30-70</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>BSC</td>
<td>1FY2-20/1FY2-21</td>
<td>Engineering Physics Lab/Engineering Chemistry Lab</td>
<td>-2-</td>
<td>60-40</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>HSMC</td>
<td>1FY1-22/1FY1-23</td>
<td>Language Lab/Human Values Activities and Sports</td>
<td>-2-</td>
<td>60-40</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>ESC</td>
<td>1FY3-24/1FY3-25</td>
<td>Computer Programming Lab/Manufacturing Practices Workshop</td>
<td>-3-</td>
<td>60-40</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>ESC</td>
<td>1FY3-26/1FY3-27</td>
<td>Basic Electrical Engineering Lab/Basic Civil Engineering Lab</td>
<td>-2-</td>
<td>60-40</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>ESC</td>
<td>1FY3-28/1FY3-29</td>
<td>Computer Aided Engineering Graphics/Computer Aided Machine Drawing</td>
<td>-3-</td>
<td>60-40</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>SODECA</td>
<td>1FY8-00</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Total 20.5

L = Lecture, T = Tutorial, P = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits
Teaching and Examination Scheme

II Semester: B.Tech.

Common to all branches of UG Engineering & Technology

<table>
<thead>
<tr>
<th>SN</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Marks</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>BSC</td>
<td>2FY2-01</td>
<td>Engineering Mathematics-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>BSC</td>
<td>2FY2-03/2FY2-02</td>
<td>Engineering Chemistry/Engineering Physics</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>HSMC</td>
<td>2FY1-05/2FY1-04</td>
<td>Human Values/Communication Skills</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ESC</td>
<td>2FY3-07/2FY3-06</td>
<td>Basic Mechanical Engineering/Programming for Problem Solving</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>ESC</td>
<td>2FY3-09/2FY3-08</td>
<td>Basic Civil Engineering/Basic Electrical Engineering</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>BSC</td>
<td>2FY2-21/2FY2-20</td>
<td>Engineering Chemistry Lab/Engineering Physics Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>HSMC</td>
<td>2FY1-23/2FY1-22</td>
<td>Human Values Activities and Sports/Language Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>ESC</td>
<td>2FY3-25/2FY3-24</td>
<td>Manufacturing Practices Workshop/Computer Programming Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>ESC</td>
<td>2FY3-27/2FY3-26</td>
<td>Basic Civil Engineering Lab/Basic Electrical Engineering Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>ESC</td>
<td>2FY3-29/2FY3-28</td>
<td>Computer Aided Machine Drawing/Computer Aided Engineering Graphics</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>SODECA</td>
<td>2FY8-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 20.5

Legend:
- **L** = Lecture,
- **T** = Tutorial,
- **P** = Practical,
- **IA** = Internal Assessment,
- **ETE** = End Term Exam,
- **Cr** = Credits

Scheme & Syllabus of First Year B. Tech. effective for Session 2021-22 Onwards
RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS
I Semester
Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
</table>
| 1 | **Calculus:**
| | Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. |
| 2 | **Sequences and Series:**
| | Convergence of sequence and series, tests for convergence; Power series, Taylor’s series, series for exponential, trigonometric and logarithm functions. |
| 3 | **Fourier Series:**
| | Periodic functions, Fourier series, Euler’s formula, Change of intervals, Half range sine and cosine series, Parseval’s theorem. |
| 4 | **Multivariable Calculus (Differentiation):**
| | Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence. |
| 5 | **Multivariable Calculus (Integration):**
<p>| | Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. |</p>
<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
</table>
| **1** | **Wave Optics:**
| **2** | **Quantum Mechanics:**
Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger’s Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger’s Equation: Particle in one dimensional and three dimensional boxes. |
| **3** | **Coherence and Optical Fibers:**
Spatial and temporal coherence: Coherence length; Coherence time and ‘Q’ factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber. |
| **4** | **Laser:**
Einstein’s Theory of laser action; Einstein’s coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine. |
| **5** | **Material Science & Semiconductor Physics:**
| **6** | **Introduction to Electromagnetism:**
Divergence and curl of electrostatic field, Laplace’s and Poisson’s equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday’s law, Displacement current and magnetic field arising from time dependent electric field, Maxwell’s equations, Flow of energy and Poynting vector. |
I & II Semester

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
</table>
| 1 | **Water:**
Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness
Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination.
Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement
Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process.
Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process. |
| 2 | **Organic Fuels:**
Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number
Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter
Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel. |
| 3 | **Corrosion and its control:**
Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion.
Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design. |
| 4 | **Engineering Materials:**
Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass
Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam... |
Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Electrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements

Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol
Contents

<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
</table>
| 1 | **Communication:**
| 2 | **Grammar:**
| 3 | **Composition:**
| 4 | **Short Stories:**
| 5 | **Poems:**
“No Men are Foreign” by James Kirkup. “If” by Rudyard Kipling. “Where the Mind is without Fear” by Rabindranath Tagore. |
<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
</table>
| 1 | **Course Introduction - Need, Basic Guidelines, Content and Process for Value Education**
Understanding the need, basic guidelines, Self Exploration - its content and process; ‘Natural Acceptance’ and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario.
Method to fulfill the above human aspirations: understanding and living in harmony at various levels |
| 2 | **Understanding Harmony in the Human Being - Harmony in Myself**
Understanding human being as a co-existence of the sentient ‘I’ and the material ‘Body’
Understanding the needs of Self (‘I’) and ‘Body’ - Sukh and Suvidha
Understanding the Body as an instrument of ‘I’, Understanding the characteristics and activities of ‘I’ and harmony in ‘I’
Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya. |
| 3 | **Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship**
Understanding harmony in the Family, Understanding values in human-human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation;
the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family. |
| 4 | **Understanding Harmony in the Nature and Existence - Whole existence as Coexistence**
Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space.
Holistic perception of harmony at all levels of existence |
<table>
<thead>
<tr>
<th>5</th>
<th>Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers. (b). At the level of society: as mutually enriching institutions and organization. Case studies related to values in professional life and individual life.</td>
</tr>
</tbody>
</table>
I & II Semester
Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
</table>
| 1 | **Fundamentals of Computer:**
 Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. |
| 2 | **Number system:**
 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix \(r_1 \) to \(r_2 \), r’s and \((r-1)’\)’s complement, Binary addition, Binary subtraction, Representation of alphabets. |
| 3 | **C Programming:**
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. |
CONTENTS

1. **Fundamentals:**
 - Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology.
 - Steam Boilers classification and types of steam boilers and steam turbines.
 - Introduction and Classification of power plants.

2. **Pumps and IC Engines:**
 - Applications and working of Reciprocating and Centrifugal pumps.
 - Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.

3. **Refrigeration and Air Conditioning:**
 - Introduction, classification and types of refrigeration systems and air-conditioning.
 - Applications of refrigeration and Air-conditioning.

4. **Transmission of Power:**
 - Introduction and types of Belt and Rope Drives, Gears.

5. **Primary Manufacturing Processes:**
 - Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing.
 - Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.

6. **Engineering Materials and Heat Treatment of Steel:**
 - Introduction to various engineering materials and their properties.
RAJASTHAN TECHNICAL UNIVERSITY, KOTA

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC Circuits:
 Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.</td>
</tr>
<tr>
<td>2</td>
<td>AC Circuits:
 Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.</td>
</tr>
<tr>
<td>3</td>
<td>Transformers:
 Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.</td>
</tr>
<tr>
<td>5</td>
<td>Power Converters:
 Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.</td>
</tr>
<tr>
<td>6</td>
<td>Electrical Installations:
 Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.</td>
</tr>
</tbody>
</table>

TOTAL
CONTENTS

<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to objective, scope and outcome the subject</td>
</tr>
</tbody>
</table>
| 2 | **Introduction:**
Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country. |
| 3 | **Surveying:**
Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements.
Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols.
Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station.
Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps. |
| 4 | **Buildings:**
Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation. |
| 5 | **Transportation:**
Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures. |
| 6 | **Environmental Engineering:**
<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air & Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming & Climate Change, Ozone depletion, Green House effect</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL
1. To determine the wave length of monochromatic light with the help of Michelson’s interferometer.
2. To determine the wave length of sodium light by Newton’s Ring.
3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
4. Determination of band gap using a P-N junction diode.
5. To determine the height of given object with the help of sextant.
6. To determine the dispersive power of material of a prism with the help of spectrometer.
7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
8. To determine the coherence length and coherence time of laser using He – Ne laser.
9. To measure the numerical aperture of an optical fibre.
10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.
I & II Semester
Common to all branches of UG Engineering & Technology

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

1. Determination the hardness of water by EDTA method
2. Determination of residual chlorine in water
3. Determination of dissolved oxygen in water
4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
7. Proximate analysis of Coal
8. Determination of the flash & fire point and cloud & pour point of lubricating oil
9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
10. Synthesis of Aspirin/ Paracetamol
I & II Semester
Common to all branches of UG Engineering & Technology

1FY2-22/ 2FY2-22: Language Lab

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phonetic Symbols and Transcriptions.</td>
</tr>
<tr>
<td>2</td>
<td>Extempore.</td>
</tr>
<tr>
<td>3</td>
<td>Group Discussion.</td>
</tr>
<tr>
<td>4</td>
<td>Dialogue Writing.</td>
</tr>
<tr>
<td>5</td>
<td>Listening comprehension.</td>
</tr>
</tbody>
</table>
PS 1:
Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:
Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?
On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:
1. Observe that each of us has the faculty of ‘Natural Acceptance’, based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our ‘Natural Acceptance’ and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:
(i) What is Naturally Acceptable’ to you in relationship the feeling of respect or disrespect for yourself and for others?
(ii) What is ‘naturally Acceptable’ to you - to nurture or to exploit others?

Is your living in accordance with your natural acceptance or different from it?

2. Out of the three basic requirements for fulfillment of your aspirations - right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:
1. a. Observe that any physical facility you use, follows the given sequence with time:
 Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless - intolerable
b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of ‘I’ or of Body or with the participation of both or with the participation of both ‘I’ and Body.
3. Observe the activities within ‘I’. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.
PS 5:
1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:
List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:
Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:
1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:
Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO’s and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

a) Planning in Sports,
b) Sports & Nutrition
c) Yoga and Life style
d) Measures Physical Education & Sports for CWSN (Children with Special needs - Divyang)
e) Children & Sports
f) Women & Sports
g) Test & Measurement in Sports
h) Physiology & Sports
i) Sports Medicine
j) Kinesiology, Biomechanics & Sports
k) Psychology & Sports
l) Training in Sports
1FY3-24/ 2FY3-24: Computer Programming Lab

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To learn about the C Library, Preprocessor directive, Input-output statement.</td>
</tr>
<tr>
<td>2</td>
<td>Programs to learn data type, variables, If-else statement</td>
</tr>
<tr>
<td>3</td>
<td>Programs to understand nested if-else statement and switch statement</td>
</tr>
<tr>
<td>4</td>
<td>Programs to learn iterative statements like while and do-while loops</td>
</tr>
<tr>
<td>5</td>
<td>Programs to understand for loops for iterative statements</td>
</tr>
<tr>
<td>6</td>
<td>Programs to learn about array and string operations</td>
</tr>
<tr>
<td>7</td>
<td>Programs to understand sorting and searching using array</td>
</tr>
<tr>
<td>8</td>
<td>Programs to learn functions and recursive functions</td>
</tr>
<tr>
<td>9</td>
<td>Programs to understand Structure and Union operation</td>
</tr>
<tr>
<td>10</td>
<td>Programs to learn Pointer operations</td>
</tr>
<tr>
<td>11</td>
<td>Programs to understand File handling operations</td>
</tr>
<tr>
<td>12</td>
<td>Programs to input data through Command line argument</td>
</tr>
</tbody>
</table>
I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

<table>
<thead>
<tr>
<th>Shop</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpentry Shop</td>
<td>1. T – Lap joint</td>
</tr>
<tr>
<td></td>
<td>2. Bridle joint</td>
</tr>
<tr>
<td>Foundry Shop</td>
<td>3. Mould of any pattern</td>
</tr>
<tr>
<td></td>
<td>4. Casting of any simple pattern</td>
</tr>
<tr>
<td>Welding Shop</td>
<td>5. Lap joint by gas welding</td>
</tr>
<tr>
<td></td>
<td>6. Butt joint by arc welding</td>
</tr>
<tr>
<td></td>
<td>7. Lap joint by arc welding</td>
</tr>
<tr>
<td></td>
<td>8. Demonstration of brazing, soldering & gas cutting</td>
</tr>
<tr>
<td>Machine Shop Practice</td>
<td>9. Job on lathe with one step turning and chamfering operations</td>
</tr>
<tr>
<td>Fitting and Sheet Metal Shop</td>
<td>10. Finishing of two sides of a square piece by filing</td>
</tr>
<tr>
<td></td>
<td>11. Making mechanical joint and soldering of joint on sheet metal</td>
</tr>
<tr>
<td></td>
<td>12. To cut a square notch using hacksaw and to drill a hole and tapping</td>
</tr>
</tbody>
</table>
1. **Basic safety precautions.** Introduction and use of measuring instruments – voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.

2. **Transformers:** Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power.

3. **Three-phase transformers:** Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents). Phase-shifts between the primary and secondary side.

4. **Demonstration of cut-out sections of machines:** dc machine (commutator-brush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine.

5. **Torque Speed Characteristic** of separately excited dc motor.

6. **Demonstration of** (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d) Components of LT switchgear.
RAJASTHAN TECHNICAL UNIVERSITY, KOTA

I & II Semester
Common to all branches of UG Engineering & Technology

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1. Linear Measurement by Tape:
 a) Ranging and Fixing of Survey Station along straight line and across obstacles.
 b) Laying perpendicular offset along the survey line

2. Compass Survey: Measurement of bearing of lines using Surveyor’s and Prismatic compass

3. Levelling: Using Tilting/ Dumpy/ Automatic Level
 a) To determine the reduced levels in closed circuit.
 b) To carry out profile levelling and plot longitudinal and cross sections for road by Height of Instrument and Rise & Fall Method.

4. To study and take measurements using various electronic surveying instruments like EDM, Total Station etc.

5. To determine pH, hardness and turbidity of the given sample of water.

6. To study various water supply Fittings.

7. To determine the pH and total solids of the given sample of sewage.

8. To study various Sanitary Fittings.
Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software (such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.
I & II Semester
Common to all branches of UG Engineering & Technology

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views—full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions—spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.
<table>
<thead>
<tr>
<th>SN</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matrices:
Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.</td>
</tr>
<tr>
<td>2</td>
<td>First order ordinary differential equations:
Linear and Bernoulli’s equations, Exact equations, Equations not of first degree: equations solvable for (p), equations solvable for (y), equations solvable for (x) and Clairaut’s type.</td>
</tr>
<tr>
<td>3</td>
<td>Ordinary differential equations of higher orders:
Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.</td>
</tr>
<tr>
<td>4</td>
<td>Partial Differential Equations – First order:
Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange’s Form, Non Linear Partial Differential equations of first order, Charpit’s method, Standard forms.</td>
</tr>
<tr>
<td>5</td>
<td>Partial Differential Equations – Higher order:
Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.</td>
</tr>
</tbody>
</table>