

Scheme of

POSTGRADUATE DEGREE COURSE

M.Tech. I to IV Semester

Industrial Engineering and Management

(Effective from academic session: 2020-21)

Rajasthan Technical University, Kota Akelgarh, Rawatbhata Road, Kota-324010 Office of Dean Academic Affairs

Rajasthan Technical University, Kota

TEACHING SCHEME

S N	Course Type	Course Code	Course Name Title	Contact hrs/wee k		Contact hrs/wee k		Contact hrs/wee k		Contact hrs/wee k		m Marks		Marks			Credits
	Type	couc		L	Т	P	1115	IA	ETE	Total							
1	PCC	1MIM1-01	Statistics for Management	3	0	0	3	30	70	100	3						
2	PCC	1MIM1-02	Operations Research	3	0	0	3	30	70	100	3						
3	PCC	1MIM1-03	Quality Systems	3	0	0	3	30	70	100	3						
4		1MIM2-11	Project Management														
	PEC	1MIM2-12	Maintenance and Reliability Management	3	0	0	3	30	70	100	3						
		1MIM2-13	Management Information System														
5	MCC	1MCC3-21	Research Methodology and IPR	2	0	0	2	30	70	100	2						
6	PCC	1MIM1-06	Industrial Engineering lab	0	0	4	4	60	40	100	2						
7	PCC	1MIM1-07	Statistical Analysis & OR Lab	0	0	4	4	60	40	100	2						
8	SODE CA	1MIM5-00	Social Outreach discipline & Extra Curriculum Activities							100	2						
			TOTAL					270	430	800	20						

1st Year – I Semester

1 st Year – 1	II Semester
--------------------------	-------------

SN	Course	Course	Course Name	Contact hrs/week		Contact hrs/week		Contact hrs/week		Contact hrs/week		Contact hrs/week		Contact hrs/week		Contact hrs/week			Mark	5	Credits
	Туре	Code	Title	L	Т	Р	Hrs	IA	ЕТЕ	Total	Cicuits										
1	PCC	2MIM1-01	Operations Management	3	0	0	3	30	70	100	3										
2	PCC	2MIM1-02	Managerial Accounting Finance and Economics	3	0	0	3	30	70	100	3										
3	PCC	2MIM1-03	Computer Integrated Manufacturing	3	0	0	3	30	70	100	3										
4	PEC	2MIM2-11	Lean Manufacturing & Supply Chain Management																		
5		2MIM2-12	Total Quality Management	3	0	0	3	30	70	100	3										
6		2MIM2-13	Advanced Operations Research & Simulation Modeling																		
7	MCC	2MCC3-XX	Audit Course-I	2	0	0															
8	PCC	2MIM1-06	Operations Management Lab	0	0	4	4	60	40	100	2										
9	PCC	2MIM1-07	CIM Lab	0	0	4	4	60	40	100	2										
10	REW	2MIM4-50	Mini -Project	2	0	4	4	60	40	100	2										
11	SODE CA	2MIM5-00	Social Outreach discipline & Extra Curriculum Activities							100	2										
			TOTAL					300	400	800	20										

SN	Course	Course	Course Name	Contact hrs/week		t Exam Marks	Credits				
	гуре	Code	The	L	Т	P	пrs	IA	ETE	Total	
1		3MIM2 11	Enterprise Resource								
1		510111012-11	Planning and E-Commerce						70		
2	DEC	3MIM2-12	Industry 4.0	3	0	0	3	30		100	3
	FEC	3MIM2-13	Innovation and		0	U	5	50		100	5
3			Entrepreneurship for								
			Engineers								
4	MCC	3MIM3-XX	Open Elective	3	0	0	3	30	70	100	3
5	MCC	3MCC3-XX	Audit Course-II	2	0	0					
6	DEW	2MIN/1 60	Dissertation -I/Industrial	0	0	20		240	160	400	10
U	KEW	REW Sivilivi4-00 Project	0	U	20		240	100	400	10	
			TOTAL					300	300	600	16

2nd Year - III Semester

2nd Year - IV Semester

SN	Course	Course	Course Name	(h	Conta rs/we	ek ek	Exam	Marks			Credits
1	гуре	Code	The	L	Т	Р	nrs	IA	ETE	Total	
1	REW	2MIM4-70	Dissertation Phase-II	0	0	32		360	240	600	16
			TOTAL					360	240	600	16

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

1MIM1-01: STATISTICS FOR MANAGEMENT

SN	Contents	Hours
1	Introduction: This course aims to introduce students to use quantitative	
	techniques for effective decisions-making; model formulation and applications	1
	that are used in solving business decision problems.	
2	Random Variable, Probability and laws of Probability, Conditional and joint	4
	Probability, Bayes Theorem.	4
3	Discrete and continuous probability distribution.	5
4	Sampling and sampling distributions, Central limit theorem and its applications	4
5	Estimation. Testing of hypothesis, type I and type II errors, Testing equality	F
	of means of two sample and more than two samples.	3
6	Correlation & Regression Analysis.	4
7	Linear Models and ANOVA, ANCOVA,	5
8	Design of Experiment (Complete and Incomplete Block designs), Factorial	F
	Experiments.	3
9	Some exposure to statistical and optimization software like MINITAB, SPSS,	2
	Solver, LINGO etc	2
	Total	40

TE	ХТВООК
1	Statistics for business and management by David R. Anderson, Danis J. Sweeney, Thomas A.
	Williams, Jeffrey D. Camm, & James J. Cochran.
2	Statistics for Management, by Rubin & Levin, Pearson,
RE	FERENCE BOOKS
1	Bluman, Alan G.: Elementary Statistics - A brief version. Third Edition, McGrawHill 2006.
2	Bowerman, Bruce L. and O'Connell, Richard T.: Business Statistics in Practice, 4th edition,
	McGraw-Hill 2007.

1MIM1-02: OPERATIONS RESEARCH

S	Contents	Hours
Ν		
1	Introduction: Objective, scope and outcome of the course. To provide	1
	problems as optimization problems.	I
2	Historical evolution of OR, Application of OR, Strengths and limitations of the OR tools/models, Formulation of real-life problems as linear programming problems, Solution of LP by using Graphical method.	5
3	Simplex Method, Big M Method, Dual Simplex Method; Duality Concepts; Sensitivity Analysis	5
4	Transportation, Transshipment and Assignment Problems, solution procedure and its applications	4
5	Integer Programming and methods of solving integer programming problems	3
6	Queuing Theory: Introduction, structure of a queuing system, performance measures, probability distribution in queuing, Queuing models: single server and multiple servers. Finite calling population queuing models	5
7	Decision Theory and Decision Trees. Game Theory (zero and non-zero sum) and its applications	5
8	Replacement Models. Replacement of Items that Deteriorate whose maintenance costs increase with time without change in the money value. Replacement of items that fail suddenly: individual replacement policy, group replacement policy.	5
9	Concept of Simulation, Monte Carlo method, Generation of Random numbers, Applications of Simulation	5
	Some exposure to optimization software (TORA, Solver, LINGO)	
	Total	40

TEX	ТВООК
1	Hillier F.S. and Liebermann G.J., Introduction to Operations Research, McGraw
	Hill, 2002.
2	Taha H A, Operations Research: An Introduction, Prentice Hall of India.
REF	ERENCE BOOKS
1	Quantitative Techniques in Management by N.D.Vohra – published by Tata McGraw
	Hill.
2	Operations Research by P. K. Gupta & Hira, S. Chand Publications.
3	Introduction to Management Science - quantitative approaches to decision making by
	Anderson, Sweeney, and Williams – published by Thomson South Western – India
	Edition.

1MIM1-03: QUALITY SYSTEMS

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to Quality Management : Quality – Concept, Different Definitions and Dimensions, Inspection, Quality Control, Quality Assurance and Quality Management, Quality as Wining Strategy, Views of different Quality Gurus, Quality Cost.	4
3	Process Quality Improvement: Introduction, Graphical and statistical techniques for process Quality Improvement, Graphical tools for data representation, 7QC tools. Control Charts for Attributes and Variables, Random and assignable causes of variations, Type I & Type II errors. Process capability analysis. Pattern Analysis, Advanced Control Charting Techniques	5
4	Acceptance sampling, OC curve, Acceptance Sampling plans and its design, ISO 2500, MIL-STD-105E, Continuous sampling Plans, Sequential Sampling	4
5	Gage and Measurement system analysis, Analysis of Variance (ANOVA), Design and analysis of experiment (DOE), Introduction to TQM	4
6	Leadership, Lean and JIT Quality Philosophy, Benchmarking, Process failure mode and effect analysis (PFMEA), Service Quality, Six sigma for process Improvement, ISO 9001, ISO 14000 and QS 9000, Quality audit, Quality Circles.	9
7	Product Quality Improvement: Quality Function Deployment, Robust Design and Taguchi Method	08
8	Design Failure Mode and Effect Analysis, Product Reliability Analysis, Six sigma in product development	05
	Total	40

TEXTBOOK

	AIDOOK
1	Amitava Mitra, Fundamentals of Quality Control and Improvement, Prentice Hall
RE	FERENCE BOOKS
1	Douglas C. Montgomery, Introduction to Statistical Quality Control, Wiley.
2	R.P.Mohanty and R.R.Lakhe, TQM in Service Sector, Jaico Pub.
3	Douglas C. Montgomery, Design & Analysis of Experiments, 5 th Edition, Wiley-India
4	Total Quality Management, Dale H. Besterfield et. al, Pearson.

1MIM2-11: PROJECT MANAGEMENT

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course. To present the concepts, techniques, and tools for managing projects effectively in terms of time, quality and cost, and also to develop skills in techniques for planning, estimating, monitoring and controlling cost, schedules, risk and performance parameters.	1
2	Systems approach to project management, project feasibility studies, project appraisal, project selection, market and demand analysis, technical analysis	8
3	Project cash flows, time value of money and cost of capital.	8
4	Project organization, cost estimation and budgeting, resource planning,	8
5	Procurement and mobilizations, roles and responsibilities, and contract administration.	8
6	Project scheduling, CPM and PERT techniques, project risk analysis and management, project crashing and scheduling with limited resources. Project monitoring and control and earned value analysis.	7
	Total	40

TEX	TEXTBOOK		
1	Projects: Planning, Analysis, Selection, Financing, Implementation, and Review,		
	Prasanna Chandra, Projects, McGraw Hill Education; Eighth edition (1 July 2017)		
2	Engineering Project Appraisal, Martin Rogers and Aidan Duffy, Wiley-Blackwell; 2		
	edition, 2012		
REF	REFERENCE BOOKS		
1	Kerzner, H., Project Management - Systems Approach to Planning, Scheduling and		
	Controlling, 2001.		
2	Meredith and Mantel, Project Management, 2001.		
3	PMI, A Guide to Project Management Body of Knowledge, 2000.		
4	Wiest, J.D. and Levy, F.K., A Management Guide to PERT / CPM, 2001.		

1MIM2-12: MAINTENANCE AND RELIABILITY MANAGEMENT

SN	Contents	Hours
1	Introduction: To discuss the role of maintenance management for competitive advantage, structuring the maintenance function; preventive, predictive and productive maintenance strategies and policies for managing operations, productivity, quality and growth. Understanding the basic principles of reliability engineering and its application to system requirements, design, manufacturing, and testing.	1
2	Objective of Maintenance; Maintenance Policies; Availability, Maintainability and Effectiveness of equipment;	5
3	Quantitative aspects of maintenance; Various aspects of preventive, predictive, productive and Total Productive Maintenance(TPM);	5
4	Replacement policies; Maintenance budgeting and cost control; Concept of World Class Maintenance to enable the organization to make its products and services competitive in terms of price, quality, on –time delivery and total customer support.	5
5	Maintenance Audit; Computer aided maintenance management system ; Case studies on total productive Maintenance; Markov Model and Application of Markov Processes in Maintenance	5
6	Maintenance Performance Indicators; Application of reliability theory in Maintenance	4
7	Introduction to Engineering Reliability, Basic Probability Theory, Application of Binomial Distribution, Network Modeling & Evaluation of Simple Systems,	5
8	Network Modeling & Evaluation of Complex Systems, Probability Distributions in Reliability Evaluation, Reliability Evaluation Using Probability Distributions,	5
9	Discrete Markov Chains, Continuous Markov Processes, Approximate System Reliability Evaluation, Monte Carlo Simulation.	5
	Total	40

TE	ТЕХТВООК		
1	K Venkataraman, Maintenance Engineering and Management, Prentice Hall of India,		
	2007		
2	Charles E.Ebeling, "An introduction to Reliability and Maintainability engineering",		
4	Tata McGraw Hill, 2000.		
REFERENCE BOOKS			
1	Nakijima S., TPM Development Programme: Implementing total Productive		
	Maintenence, Productivity Press, Canbridge.		
2	Terry W., Computerised Maintenance Management Systems, Industrial Press, New		
	York.		
3	Lindley R.Higgins & R.Keith Mobley, "Maintenance Engineering Handbook",		
	McGraw Hill,		
4	Suzuki T., TPM in process industries, Productivity Press, Portland, Oregon		

1MIM2-13: MANAGEMENT INFORMATION SYSTEMS

SN	Contents	Hours
1	Introduction: Organisations and Computing: Introduction, Modern Organisation-IT enabled- Networked-Dispersed- Knowledge Organisation, Information Systems in Organisations- what are information systems?, Brief history of computing- ENIAC: Way to commercial computers- Advent of artificial intelligence	1
2	Managing Information Systems in Organisations: Introduction, Managing in the Internet Era, Managing Information Systems in Organisation-the IT interaction model, Challenges for the manager	5
3	Data and Information: Introduction, data and information- types of information technology, types of information systems- transaction processing systems- management information systems	5
4	Decision making and communication: Introduction, Decision making with MIS- Tactical decisions-operational decisions-strategic decisions, IT strategy: Introduction, Information goods-properties-technology lock-in and switching costs-network externalities-positive feedback-tippy markets, information systems and competitive strategy- value chain	5
5	Business Process Integration with IT: Introduction, Business Process Integration- Business processes-example of a complex process, Motivation for Enterprise Systems, Enterprise Resource Planning systems- finance and accounting module-human resource management module-manufacturing and operations module- sales and marketing module	5
6	SCM, CRAM and International Systems: Introduction, Supply Chain Management Systems, Customer Relationships Management Systems, Challenges of Enterprise Systems Implementations- Managing the implementation, International Information Systems-Outsourcing and off-shoring	5
7	Electronic Commerce: Introduction, E-commerce Technology, doing business over internet- networks-electronic data interchange (EDI)-online payment technology- Mobile commerce- ecommerce-portals- search engines-direct selling- auctions- aggregators, E-business	5
8	Decision Support Systems: Introduction, Understanding DSS- MIS and DSS- Decision making-types of decisions, Analytics and Business Intelligence- BI techniques. Ethical Issues: Introduction, Key issues- Privacy-Workplace Monitoring- Power over users	3
9	Managing Data Resources: Introduction, The Need for Data Management- History of data use, Challenges of Data Management- data independence- reduced data redundancy- data consistency- data access- data administration- managing concurrency, Database Concepts- fields, records and files- basic architecture, Data Warehouses- data mining uses, Entity Relationship diagram, SQL	6
	Iotai	4V

TEX	ТЕХТВООК		
1	James O'Brien, George Marakas, Management Information Systems		
2	R. Kelly Rainer, Brad Prince, Hugh J. Watson, Management Information		
4	Systems, J Wiley		
REFERENCE BOOKS			
1	Kenneth C. Laudon, Jane P. Laudon, Management Information Systems,		
	Managing the Digital Firm, Pearson Edu.		
2	Management Information Systems 7th Edition by Ken J. Sousa		

1MIM1-06: INDUSTRIAL ENGINEERING LAB

 Distribution Verification: a) Verification of Normal Distribution b) To find the distribution of numbered cardboard chips by random drawing one at a time with replacement. Make 25 subgroups in size 5 and 10 find the type of distribution of sample average in each case. c) Verification of Poisson Distribution Central Limit Theorem: a) To show that a sample means for a normal universe follow a normal distribution. b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. Case Study on Process Control using Shewhart Control Chart: X bar and R charts Case Study on Machine and Process Capability Analysis using probability plot and capability indices Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 a) Verification of Normal Distribution b) To find the distribution of numbered cardboard chips by random drawing one at a time with replacement. Make 25 subgroups in size 5 and 10 find the type of distribution of sample average in each case. c) Verification of Poisson Distribution 2 Central Limit Theorem: a) To show that a sample means for a normal universe follow a normal distribution. b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 b) To find the distribution of numbered cardboard chips by random drawing one at a time with replacement. Make 25 subgroups in size 5 and 10 find the type of distribution of sample average in each case. c) Verification of Poisson Distribution 2 Central Limit Theorem: a) To show that a sample means for a normal universe follow a normal distribution. b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 time with replacement. Make 25 subgroups in size 5 and 10 find the type of distribution of sample average in each case. c) Verification of Poisson Distribution 2 Central Limit Theorem: a) To show that a sample means for a normal universe follow a normal distribution. b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 distribution of sample average in each case. c) Verification of Poisson Distribution 2 Central Limit Theorem: a) To show that a sample means for a normal universe follow a normal distribution. b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 c) Verification of Poisson Distribution 2 Central Limit Theorem: a) To show that a sample means for a normal universe follow a normal distribution. b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 2 Central Limit Theorem: a) To show that a sample means for a normal universe follow a normal distribution. b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 a) To show that a sample means for a normal universe follow a normal distribution. b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 b) To show that the sample means for a non-normal universe also follow a Normal Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 Distribution given the distribution of universe as: i) Uniform ii) Poisson. 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 3 Case Study on Process Control using Shewhart Control Chart: X bar and R charts 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 4 Case Study on Machine and Process Capability Analysis using probability plot and capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 capability indices 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 5 Attribute Control Chart a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
 a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. b) Plot a P-chart by taking a sample of n=20 and establish control limits.
balls with a red colour to be defective.b) Plot a P-chart by taking a sample of n=20 and establish control limits.
b) Plot a P-chart by taking a sample of n=20 and establish control limits.
6 Operating Characteristics Curve:
a) Plot the operating characteristics curve for single sampling attribute plan for $n = 20$
; $c = 1$, 2, 3, 4. Designate the red ball to defective.
b) Compare the actual O.C. curve with theoretical O.C. curve using approximation for
the nature of distribution.
7 To design acceptance sampling plan for predefined value of AQL/Producers risk and
LTPD/Consumers risk
8 Case study on estimation of equipment error of measurement
9 Case Study on Parameter Design
10 Case Study on DOE

Note: The above list is suggestive. Experiments/case studies may be added relevant to the theory courses taught in the semester

1MIM1-07: STATISTICAL ANALYSIS & OR LAB

Note: In this lab students are required to perform experiments using software packages like MSEXCEL/Solver, LINGO /SYSTAT /R/TORA/SAS/MINITAB/Design Expert

SN	List of Experiments
1	a) To develop tables and charts for categorical and numerical data: Bar Chart, PIE Chart,
	Pareto Diagram, Steam and Leaf display, Frequency distribution, Histogram, Scatter
	plot and Time Series plots for the given dataset.
	b) To compute the numerical descriptive statistics, covariance and coefficient of
	correlation for the given raw data and to construct Box and Whisker plot
2	To construct contingency table, compute conditional, marginal probability and use Bayes
	theorem for the given data and interpret results
3	To construct the distribution plot for discrete distribution and continuous distribution
	probability distributions and infer results.
4	Using the given survey data, construct the 95% confidence interval estimate of
	population characteristics for each variable and draw conclusions
5	a) To use p-value approach to hypothesis testing to test a mean or proportion: One
	sample test.
	b) To use hypothesis testing for comparing between difference between means,
	proportions and variances of two populations
6	To carry out One-way ANOVA and Two-way ANOVA
7	Use of OR Techniques - A case study of Insulator India Ltd. (Product Mix problem)
8	Use of OR Techniques - A case study of ECS Corporation. (Transportation problem)
	To generate random number for system simulation and to carry out Monte Carlo
	simulation
9	To carry out Simulation of Queuing Systems/Inventory Systems etc.
10	To use integer programming for a given case.

Note: The above list is suggestive. Experiments/case studies may be added relevant to the theory courses taught in the semester

2MIM1-01: OPERATIONS MANAGEMENT

SN	Contents	Hours
1	Introduction: The objective of the course is to develop familiarity with the	
	concepts of production systems their constraints, and their linkages with the	
	overall business strategy; planning and control of operations; optimal utilization	1
	of resources and interfaces of operations management with other managerial	
	areas.	
2	Operations Management and its scope, Historical Evolution, Competitiveness,	
	Strategy and Productivity, improving productivity. Motion and Time Study,	
	Problem solving process, Work Method Design, Process analysis, Work	5
	measurement: Time Study, Rating, Allowances, Stopwatch time study,	L L
	predetermined time standards, standard data, Work sampling, Applications.	
	Introduction to Human Factors.	
3	Demand Management and Forecasting; Strategic Importance, Approaches to	
	Forecasting, Qualitative and, Quantitative Methods, Accuracy and monitoring the	4
	Iorecast.	
4	Capacity Planning: Introduction to capacity, Capacity Strategy, Measures of	2
	capacity, factors determining effective capacity, developing capacity strategies, and	3
2	evaluating alternatives.	
3	Location Problems: Single Facility Location Problem: Multi facility Location	
	Droblem: Process Selection Levent Dianning: Pasic Levent types Designing	
	Product Layout: Line balancing Systematic Layout planning procedure Flow	
	Space and Activity Palationships, Computer Aided Layout Planning: Materials	5
	Handling (MH): MH System design Unit Loads MH Equipment's Principles of	
	MH ASRS AGV: Introduction to Warehouse I avout planning: Storage and	
	Retrieval Systems: Warehouse Management	
5	Aggregate Planning and Master Scheduling: Planning and Scheduling Objectives	
C	of Aggregate Planning, Strategies of Aggregate Planning, Master Scheduling	5
6	Materials Management: Scope, Purchasing Process, Make or Buy decisions,	
	Inventory Management: Classification, Functions of inventories, Dependent and	
	independent demand, Inventory costs. Economic Order Quantity Models: Basic	
	EOQ Model, Economic Run Length Model, Quantity discount Model. Reorder	
	Point Models, Service levels and safety stock, Fixed Order Interval Model. Single	-
	Period Model: Continuous and discrete stocking levels. Selective Inventory	5
	Control.	
	Materials and Capacity requirements planning(MRP/CRP): MRP inputs and	
	outputs, Bill of Materials (BOM), System parameters and Lot sizing techniques,	
	MRP Logic. CRP activities. Basic concept of MRP II & ERP	
7	Operations Scheduling and Control: Functions and objectives, Scheduling in High	
	volume and Low volume systems, Order Release. Loading and Assignment: Gantt	5
	Charts, Infinite and finite loading, Sequencing: Priority rules: SPT, FCFS, EDD,	J
	CR, S/O, RUSH. Johnson's Rule, Scheduling in Services	
8	Project Management Introduction, Difference between PERT and CPM,	
	PERT/CPM Network Components and Precedence Relationship, Project	
	Management – PERT	4
	Office of Dean Academic	Affairs
	Rajasthan Technical Univer	sity, Kota

9Lean Manufacturing and Agile Manufacturing, Just-In-Time: Introduction,
Characteristics of JIT, Key Processes to Eliminate Waste, Implementation of JIT,
Pre-requisites for implementation, JIT Inventory and Supply Chains5

Total 40

TEXTBOOK Operations Management, (Latest Edition), William J. Stevenson, Tata McGraw Hill 1 education Private Limited. **REFERENCE BOOKS** Operations & Supply Management, (Latest Edition), Chase, R. B. Aquilano, N. J. 1 Jacobs, F. R. Boston, McGraw-Hill. 2 Operations Management: Processes and Supply Chains, (latest Edition), Krajewski, Ritzman, L. P. and Malhorta, M.J., Pearson. 3 Operations Management, (Latest Edition), Heizer, Jay; Render, Barry, Upper Saddle River, N.J.: Prentice-Hall. Introduction to Work Study: International Labor Office (ILO), Geneva. 4 Motion and Time Study Design and Measurement of Work: Ralph M. Barnes, Wiley, The 5 University of California

2MIM1-02: MANAGERIAL ACCOUNTING FINANCE AND ECONOMICS

SN	Contents	Hours
1	Introduction: To make students identify and analyze tools to understand, evaluate and analyse the financial information available in Financial Statements and other sources of Financial Information like Directors Report, Management Discussion & Analysis and enable them to develop	1
2	The nature and purpose of Accounting, Basic accounting concepts.	
	Components of financial statement: The Balance Sheet, The Income Statement and The Cash Flows.	5
3	Standards in understanding financial statements. Performance evaluation of a business using financial statements.	5
4	Financial Statement Analysis. Compare financial performance both inter and intra business. Introduction to Corporate Finance: Goals of Financial Management, Conflicts between Company Stakeholders, Financial Markets.	5
5	Time Value of Money: FV/PV of Cash Flows and Cash Flow Streams.	5
6	Compounding/Discounting, Multiple Compounding and Discounting, Different compounding periods.	5
7	Amortized Loans. Bonds and their valuation: Terminology and characteristics of bonds, Bond valuation, Bond yields.	5
8	Stocks and their valuation: Terminology and characteristics of stocks, Stock valuation models, Growth opportunities & PVGO model. Risk and Return: Expected Rate of Return, Standard Deviation of Returns.	5
9	Relationship between Risk and Return. The Capital Asset Pricing Model: Measuring Portfolio Risk, Diversification. The Capital Asset Pricing Model (CAPM)	4
	Total	40

TEXT	BOOK
1	Ross, Westerfield, Jaffee: Corporate Finance, 11th. edition
REFERENCE BOOKS	
1	Richard Brealey, Stewart Myers, Franklin Allen: Principles of Corporate
	Finance, 11e. McGraw Hill
2	Robert N Anthony, David F Hawkins and Kenneth A Merchant (AHM),
	Accounting: Text and Cases

2MIM1-03: COMPUTER INTEGRATED MANUFACTURING

SN	Contents	Hours
1	Introduction: To provide an exposure of Information and communication Technology and application of computer for automation of manufacturing tasks.	1
	To summarize and examine the importance of Additive Manufacturing technology from business competitiveness point of view.	
2	Introduction to NC, CNC, DNC machine tools, Constructional features of NC Machine Tools, CNC Tooling and Fixturing,	4
3	CNC Programming: Basic and Advanced, Computer Assisted Part Programming, System Drives and Devices, Interpolators: Software and Hardware,	5
4	CNC Controller, Adaptive Control System, Machining Centre, Turning Centre, Communication Networks and Virtual NC Systems.	5
5	Components of CIM, Data base For CIM, Planning, Scheduling and Analysis of CIM systems. Manufacturing Automation, Automation strategies,	5
6	Automated Flow lines, Line Balancing, Automated Assembly systems, Automatic Material Handling and Storage systems, Automated Inspection systems,	5
7	Group Technology, Cell Design, Cellular Manufacturing Systems, Computer Aided Process Planning.	5
8	CNC programming for turned and milled components and auto CNC programming using software.	5
9	Additive Manufacturing (AM) need, definition, generic AM process steps, Classification of AM Processes, Metal Systems, Need for time compression in product development, traditional Vs. Rapid Prototyping, applications, Related Technologies like CNC & reverse Engineering,	5
	Total	40

TE	КТВООК		
1	Yoram Koren, Computer Control of Manufacturing Systems, McGraw Hill		
I	International, Singapore, 2006		
2	Mikell P Groover, Automation, Production Systems and Computer Integrated		
2	Manufacturing, 3rd Edition, Prentice Hall Inc., New Delhi, 2007.		
RE	REFERENCE BOOKS		
1	John Stenerson and Kelly Curran, Computer Numerical Control: Operation and		
	Programming, PHI, New Delhi, 2009		
2	TC Chang, RA Wysk and HP Wang, Computer Aided Manufacturing, PHI, New Delhi, 2009.		
3	James V. Valentino and Joseph Goldenberg, Introduction to Computer Numerical		
	Control, 5th Edition, Prentice Hall, Englewood Cliff, New Jersey, 2012.		
4	Nanua Singh, System Approach to Computer Integrated Manufacturing, Wiley & Sons, 1996.		
5	Adedeji B. Badiru, Vhance V. Valencia, David Liu, Additive Manufacturing Handbook:		
	Product Development for the Defense Industry, CRC Press; 1 edition, CRC Press, 2017.		
6	Ian Gibson · David Brent Stucker, Additive Manufacturing Technologies 3D Printing,		
	Rapid Prototyping, and Direct Digital Manufacturing, Second Edition, Springer, 2015		
	Office of Dean Academic Affair		

Rajasthan Technical University, Kota

2MIM2-11: LEAN MANUFACTURING & SUPPLY CHAIN MANAGEMENT

Contents	Hours
n : To appraise and apply lean manufacturing techniques and	
applications in different manufacturing systems.	
an understanding and cross functional perspective of Supply	1
strategic implications of the best practices in Supply Chain	
t.	
to the Production System and the Role of Inventory, Value and	
a, Mura, and Muri, Value added and non-value-added activities,	2
nation, Value stream mapping. Flow production, Pull production	3
ntinuous improvement, Decentralized Pull Systems	
roduction, Setup time reduction, Maintaining and improving the	
Focused factory. Cellular manufacturing, Standard operations,	2
ource, Mixed model scheduling	
e Inventory Control, Multi-Stage Production Systems: Materials	
ts Planning for Dependent Demand, Multi-Stage Models. Lean	3
ng and the Just-in-Time Philosophy, Shop Scheduling, Shop Floor	U
tems and Extensions.	
A STRATEGIC FRAMEWORK TO ANALYZE SUPPLY	
Understanding the Supply Chain, Supply Chain Performance:	6
trategic Fit and Scope, Supply Chain Drivers and Metrics.	
he supply chain network: Designing Distribution Networks and	
s to Online Sales, Network Design in the Supply Chain, Designing	6
ly Chain Networks.	
AND COORDINATING DEMAND AND SUPPLY IN A	
HAIN: Demand Forecasting in a Supply Chain, Aggregate	7
a Supply Chain, Sales and Operations Planning in a Supply	
UNIAUON IN A SUPPLY CHAIN.	
and MANAGING INVENTORIES IN A SUPPLY CHAIN:	
tity Managing Uncertainty in a Supply Chain: Cycle Inventory, Economic	
ortage per Replenishment Cycle, Evaluating Safety Inventory for	8
of Items I inking Product Availability to Profits Optimal I evel of	U
ailability An Intermediate Evaluation Expected Profit from an	
cted Overstock /Under stock from an Order	
on in a Supply Chain Managing cross functional drivers in a	
n: Sourcing Decisions in a Supply Chain. Pricing and Revenue	4
t in a Supply Chain, Sustainability and the Supply Chain.	•
Total	40

TEX	ТВООК		
1	Supply Chain Management: Strategy, Planning, and Operation, Sunil Chopra, Peter		
	Menidle, Prentice Hall.		
2	Nicholas John, Lean Production for competitive advantage, - a comprehensive guide to		
	lean methodologies and management practices, productivity press, 2011.		
REF	REFERENCE BOOKS		
1	Principles of Supply Chain Management: A Balanced Approach. 4th ed. Wisner, J. D.,		
	Tan, KC., & Leong, G. L. Nelson, Cengage.		
2	Supply Chain Design and Management: Strategic and Tactical Perspectives, Academic		
	Press, San Diego, Manish Govil and Jean-Marie Prop.		
3	Integral Logistics Management: Operations and Supply Chain Management within and		
	Across Companies, Paul Schönsleben, CRC Press, Taylor & Francis Group.		
4	Designing and Managing the Supply Chain (Latest Edition), David Simchi-Levi,		
	Philip Kaminsky, Simchi-Levi, McGraw Hill.		
5	Essentials of Supply Chain Management, Michael H. Hugos, John Wiley & Sons.		
6	Askin and Goldberg, Design and Analysis of Lean Production Systems, John Wiley		
	and Sons. 2003.		
7	Hayes, R.H., Pisano, G.P., Upton, D.M. and Wheelwright, S.C. (2005), Operations,		
	Strategy, and Technology: Pursuing the Competitive Edge, John Wiley and Sons.		
8	Womack and Jones, Lean Thinking, Simon and Schuster. 2003		

2MIM2-12: TOTAL QUALITY MANAGEMENT

SN	Contents	Hours
1	Introduction: To introduce the Quality Management Concepts, Strategies,	1
	Models and Methodologies etc. for understanding the subject scope in the areas	
	and for effective decisions in the areas of Quality Improvement of a processes,	
	products and services.	
2	Introduction to TQM: Definition, Basic approach, TQM Guru's, framework,	4
	benefits.	
3	Leadership: Characteristics of Quality Leadership, Leadership Concepts, The 7	5
	Habits of Highly Effective People, Deming Philosophy, Role of TQM Leaders,	
	Strategic Planning, Customer Satisfaction: Introduction, Customer Perception	
	of Quality, Service Quality, Translating Needs into Requirements, Customer	
	Retention.	
4	Continuous Process Improvement: Introduction, Process, The Juran Trilogy,	4
	Improvement Strategies, Types of Problems PDSA Cycle, Problem-Solving	
	Method, DMAIC, Kaizen, Reengineering, six sigma.	
5	Supplier Partnership: Principles of Customer/Supplier Relationship Partnering,	4
	Sourcing Supplier, Selection, Supplier Certification, Supplier Rating.	
	Performance Measures: Basic Concepts, Strategy, performance measure	
	presentation, Cost of Quality, Malcolm Baldrige and Rajiv Gandhi Quality	
	Award.	
6	Lean Enterprise: Historical Review, Lean Fundamentals, Value Stream Map,	5
	Implementing Lean, Benefits.	
	Six Sigma: Historical Review, Statistical Aspects, Improvement Methodology,	
	Organizational Structure Benefits. Benchmarking: Benchmarking Defined,	
	Reasons to Benchmark, Process, deciding what to benchmark, Pitfalls and	
	Criticisms. Quality Function Deployment: The QFD Team, QFD Process.	_
7	Quality Management Systems: Benefits of ISO Registration, ISO Series of	5
	Standards, ISO 9001 Requirements, Implementation, Documentation.	
	Environmental Management Systems: ISO 14000 Series Standards, Concepts of	
	ISO 14000/14001, Requirements, Benefits, Integrating QMS and EMS. Other	
0	EMS Systems.	4
δ	I otal Productive Maintenance: The Plan, Learning the New Philosophy,	4
	Management Tagle, Farred Field Analysis, Newigel Course Tagles, 400 it	A
9	Nanagement 1001s: Forced Field Analysis, Nominal Group Technique, Affinity	4
	Diagram, interretationship Digraph, Tree Diagram, Matrix Diagram, Process	
10	Decision Program Chart, Activity Network Diagram	
10	raguent's Quality Engineering: Introduction, Loss Function, Orthogonal Arrays,	4
	Signal-10-1101se Kallo, Parameter Design,	40
		40

TEX	ТЕХТВООК			
1	Dale H. Besterfield, Total Quality Management, Pearson edu.			
2	R Kesavan, C Elanchezhian, B Vijaya Ramnath, Total Quality Management, I K International			
	Publishing House			
REF	REFERENCE BOOKS			
1	James R. Evans, Total Quality-Management, Organization and Strategy			
2	Joel E. Ross, Susan Perry, Total Quality Management-Text, Cases, and Readings			
3	David L. Goetsch, Stanley Davis, Quality Management for Organizational Excellence-			
	Introduction to Total Quality			
4	Erick Jones, Quality Management for Organizations Using Lean Six Sigma Techniques, CRC			
	press			
5	John S Oakland, Peter Morris, Total Quality Management-A pictorial guide for managers			

2MIM2-13: ADVANCED OPERATIONS RESEARCH & SIMULATION MODELING

SN	Contents	Hours
1	Introduction: General description of Operations Research and Simulation modelling	1
2	Probability concents: Pandom Variables discrete and continuous probability	1
2	distribution mainly Binomial Normal Weibull exponential Uniform Poisson Frlang	2
3	Physical modeling : Concept of system and environment, continuous and discrete	
5	system linear and nonlinear system stochastic activities, static and dynamic models	
	principles used in modeling. Basic simulation modeling. Role of simulation in model	2
	evaluation and studies. Advantages and Disadvantages of simulation	
1	Computer system simulation: Technique of simulation. Monte Carlo method	
-	experimental nature of simulation, numerical computation techniques, continuous	
	system models, analog and hybrid simulation, feedback systems, Building simulation	1
	models of waiting line system. Job shop, material handling and flexible manufacturing	-
	systems	
5	Random Numbers: Properties Generations methods Tests for Random number-	
5	Frequency test Runs test Autocorrelation test Random Variate Generation: Inverse	Δ
	Transform Technique-Exponential Uniform Weibull distributions	-
6	Input Modelling: Data collection Identification and distribution with data parameter	
U	estimation Goodness of fit tests Selection of input models without data Multivariate	
	and time series analysis Verification and validation. Design of simulation	6
	experiments validation of experimental models testing and analysis	
7	Output Analysis – Types of Simulations with Respect to Output Analysis. Stochastic	
,	Nature of output data Measures of Performance and their estimation Output analysis	
	of terminating simulation. Output analysis of steady state simulations. Selection of	
	Simulation Software. Simulation packages. Trend in Simulation. Do modeling using	6
	ARENA software which is freely available. Some more suggested simulation	Ŭ
	packages are Promodel. Ouest, Witness, Extend, Simio etc. Students can learn any	
	one of them.	
8	Integer Programming: Integer programming models - Relaxations - Branch-and-	
	bound algorithm - Better and ideal formulations - Cutting planes.	
	Dynamic programming: Dynamic programming models and applications - Graphical	5
	representation - Optimality principle, deterministic dynamic programming,	
	probabilistic programming	
9	Markov chains Stochastic processes - States, Markov Chains - Transition matrices -	
	Types of chains - Steady-state probabilities.	6
	Metaheuristics: Nature of Metaheuristics, introduction to Tabu Search, Simulated	U
	Annealing, Genetic Algorithms and other nature inspired methods	
10	Nonlinear Programming: Nonlinear models, Review of linear algebra and calculus,	
	Local and global solutions, Feasible directions, Improving directions, one variable	
	unconstrained optimization, multivariable unconstrained optimization, Karush-Kuhn-	6
	Tucker conditions for constrained optimization, quadratic programming, separable	U
	programming, Geometric programming, convex programming and non convex	
	programming.	
	Total	40

TEX	ГВООК		
1	Simulation Modeling and Analysis, Law A.M., McGraw Hill.		
2	Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations Research, McGraw Hill		
REF	REFERENCE BOOKS		
1	Discrete-Event System Simulation, Banks and Carsan, PHI		
2	Simulation Modeling and Analysis with ARENA, Altiok and Melamed, A P		
3	Simulation with ARENA, Keltan, Sadowski and Turrock, McGraw Hill		
4	Simulation Modeling and ARENA, Rossetti and Taha, John Wiley		
5	Narsingh Deo, Systems Simulation with Digital Computer, PHI Publication		
6	Richard Bronson, Schaum's Outline of Operations Research, TMH		
7	Paul Goodwin, Decision Analysis for Management Judgment		
8	Warren B. Powell, Approximate Dynamic Programming: Solving the Curses of		

2MIM1-06: OPERATIONS MANAGEMENT LAB

SN	List of Experiments
1	Case Study on Operations Decision Making using Breakeven Analysis and Decision
I	Theory
2	Case Study on Work System Design
3	Case Study on Demand Forecasting
4	Case Study on Location Planning.
5	Case Study on Layout Analysis.
6	Case study on "SLP" Systematic Layout Planning.
7	Case Study on Optimal Capacity Planning
8	Production - Inventory control game: "ILO CONTROL".
9	Case study on ABC analysis.
10	Case Study on Aggregate Production Planning

Note: The above list is suggestive. Experiments/case studies may be added relevant to the theory courses taught in the semester

2MIM1-07: CIM LAB

SN	List of Experiments	
1.	Practice in part programming and operation of CNC turning machines making use of	
	subroutine techniques and cycles for rotational components. Students need to develop	
	manual part program using G&M code for given rotational components.	
2.	Practice in part programming and operation of CNC Milling machines making use of	
	subroutine techniques and cycles for prismatic components. Students need to develop	
	manual part program using G&M code for given prismatic components.	
3.	Practice in part programming and operating a machining center, tool panning and	
	selection of sequences of operations, tool setting on machine, practice in computer	
	assisted part programming using APT programming.	
4.	Practice in Robot programming and its languages. Robotic simulation using software.	
	Robot path control, preparation of various reports and route sheets.	
5.	Simulation of computer aided manufacturing system using simulation software such	
	as ARENA or Xcos.	
6.	Practice in coding a CAPP program for a given part produced through machining	
	processes using higher level languages such as C++, python, Prolog etc.	
7	Study of Flexible Manufacturing system and practice programming of integration of	
	various components of FMS namely CNC machines, AS/RS system, Robots, AGV	
	and conveyor belt.	
8	Study of Flexible Manufacturing system and practice programming of integration of	
	various components of FMS namely CNC machines, AS/RS system, Robots, AGV	
	and conveyor belt.	
9	To model a part using CAD software (Solidwoks/NX Academia) and generate tool	
	path using GrabCAD for 3D printing.	
10	To prepare CAD model for an assembly using CAD software (Solidwoks/NX	
	Academia) and generate tool path using GrabCAD for 3D printing.	
Note: The above list is suggestive. Experiments may be added relevant to the theory		
cour	rses taught in the semester	

3MIM2-11: ENTERPRISE RESOURCE PLANNING

SN Cont	tents	Hours
1 Introduction: To understand the busin marketing, procurement, manufacturin how ERP system can support and optin To learn how to manage the supply system in simulated, real-time environ decision making process.	ess processes from areas such as sales, g, and accounting and to demonstarte nize the inherent business processes. chain of a company using an ERP ment and understand E-commerce and	1
2 Introduction to ERP systems and (Procure to pay and Order to Cash) c and ERP systems.	understanding of business Processes connection between business processes	2
3 Business Process Reengineering and I Implementation and Evaluation of Processes, various modules viz: Sa Finance, Production and Materials Man	Enterprise Resource Planning Systems, ERP systems, Integrated Business les and Marketing, Accounting and nagement, Human Resources,	4
4 Project Systems, Customer Service; Cycle, Case Studies. ERP Impleme Vendors, Consultants, Human Resou Engineering, Configuration, Implement Live and End User Training, Post Imple	Managing an ERP Project, ERP Life ntation : Gap Analysis, Hidden Cost, rce. Post Implementation Phases: Re- tation, Team Training, Testing, Going mentation (Maintenance Mode).	5
5 Introduction: E-commerce, Business An Analysis, Business Analysis & technic for E-commerce, E- commerce Security Social Issues in E-commerce, E- market	halytics, Business Models and Strategic al Analysis. Technology Infrastructure and Payment Business. Concepts and ing, E-commerce Policies and IPR.	5
6 E-service B2B, E-commerce and Sup Portals and Online Communities integration architecture: Overview assessment - Service integration ar architecture - Process integration archite Application integration - Information in	oply Chain, Auctions in E-commerce Digital Products/Media. Enterprise - Current integration architecture chitecture - Information integration ecture, enterprise integration solutions - tegration.	6
 7 Enterprise Integration: enterprise in strategies - The business imperative drivers and requirements - Enterprise Blockchain Technology, Cryptocurrency 	tegration drivers, requirements and for enterprise integration - Business integration strategy, Introduction to y, Industry 4.0	6
9 ERP and E-commerce: Future Directiv Factors Guiding Selection and Evaluat ERP Implementation, Critical Success I Factors in ERP Implementation, Integrat	es in ERP, ERP and Internet, Critical tion of ERP, Strategies for Successful Factors in ERP Implementation, Failure ing ERP into Organisation.	6
	Total	40

TE	ХТВООК	
1	Alexis Leon ERP Demystified 3 Edition (Paperback) Tata McGraw - Hill	
T	Education, 2014.	
2	Jagan Vaman Nathan ERP in Practice: ERP Strategies for Steering Competence &	
2	Competitive Advantage 1st Edition (Paperback) Tata McGrawffiffill Education 200 fairs	
Rajasthan Technical University, Kota		

RE	REFERENCE BOOKS			
1	Glynn C. Williams Implementing SAP ERP Sales and Distribution 1 Edition, TMH			
2	Janice Reynolds(2000), The complete E-commerce book, Google book publisher			
3	Dave Chaffey(2002), E-business and E-commerce Management, 2006, PHI.			
4	Don Tapscott, and Alex Tapscott, Blockchain Revolution, ISBN-13: 978-0241237854,			
	Portfolio Penguin Publishers			

3MIM2-12: INDUSTRY 4.0

SN	Contents	Hours
1	Introduction: This course is designed to offer learners an introduction to	1
	Industry 4.0 (or the Industrial Internet), its applications in the business world.	
	Learners will gain deep insights into how smartness is being harnessed from	
	data and appreciate what needs to be done in order to overcome some of the	
	challenges.	
2	Introduction to Industry 4.0 ,The Various Industrial Revolutions, Digitalisation	6
	and the Networked Economy, Drivers, Enablers, Compelling Forces and	
	Challenges for Industry 4.0, The Journey so far: Developments in USA,	
	Europe, China and other countries,	
3	Comparison of Industry 4.0 Factory and Today's Factory, Trends of Industrial	6
	Big Data and Predictive Analytics for Smart Business Transformation.	
4	Road to Industry 4.0 : Internet of Things (IoT) & Industrial Internet of Things	6
	(IIoT) & Internet of Services, Smart Manufacturing, Smart Devices and	
	Products, Smart Logistics, Smart Cities, Predictive Analytics.	
5	Related Disciplines, System, Technologies for enabling Industry 4.0,	7
	Cyberphysical Systems, Robotic Automation and Collaborative Robots,	
	Support System for Industry 4.0, Mobile Computing, Related Disciplines,	
	Cyber Security.	
6	Role of data, information, knowledge and collaboration in future organizations,	7
	Resource-based view of a firm, Data as a new resource for organizations,	
	Harnessing and sharing knowledge in organizations, Cloud Computing Basics,	
	Cloud Computing and Industry 4.0	
7	Business issues in Industry 4.0, Opportunities and Challenges,2 Future of	7
	Works and Skills for Workers in the Industry 4.0 Era, Strategies for competing	
	in an Industry 4.0 world	
	Total	40

ТЕХТВООК		
1	Alasdair Gilchrist, Industry 4.0: The Industrial Internet of Things, 2017, Apress	
2	Ustundag, Alp, Cevikcan, Emre, Industry 4.0: Managing The Digital Transformation,	
	Springer Publications	
REFERENCE BOOKS		
1	Christoph Jan Bartodziej, The Concept Industry 4.0 An Empirical Analysis of	
	Technologies and Applications in Production Logistics, Springer Gabler	
2	Journal Articles, NIST templates and IEEE Standards, Industry 4.0 Standards,	
	Industrial IOT Standards, Reports Office of Dean Academic Affairs	
	Rajasthan Technical University K	

3MIM2-13: INNOVATION AND ENTREPRENEURSHIP FOR ENGINEERS

SN	Contents	Hours
1.	Introduction: Objective, scope and outcomes of the course.	1
2.	Entrepreneurship: Concept and Definitions; Entrepreneurship and Economic Development; Types of Entrepreneurs; Factor Affecting Entrepreneurial Growth – Economic, Non-Economic Factors; EDP Programmes; Entrepreneurial Training; Traits/Qualities of an Entrepreneurs; Manager Vs.	5
2	Entrepreneur, types of entrepreneurships, Entrepreneurial myths.	0
3.	Opportunity Identification and Product Selection: Entrepreneurial Opportunity Search and Identification; Criteria to Select a Product; Conducting Feasibility Studies; Sources of business ideas, launching a new product; export marketing, Methods of Project Appraisal, Project Report Preparation; Project Planning and Scheduling. Sources of finance for entrepreneurs. Procedure for Export and Import. Handicraft business opportunities in India.	8
4.	Support Institutions and Management of Small Business: MSME- Definition and significance in Indian economy, Registration, NOC from Pollution Board; Major problems faced by MSME; MSME Schemes, Challenges and Difficulties in availing MSME Schemes, Development Commissioner (MSME); Department of Industrial Policy and Promotion (DIPP); Director of Industries (DIC); KVIC, Coir Board; SIDBI; RIICO, SIDCO; NSIC, RSIC; Entrepreneurship development institutes: NIESBUD, IIE, NIMSME, EDI etc; State Financial Corporation SFC; Venture Capital: Concept, venture capital financing schemes offered by various financial institutions in India, Legal issues related to forming business entity, Requirements for formation of a Private/Public Limited Company. Steps in registration of firms and partnership.	10
5.	Introduction to IPR and patents: Basic concept of intellectual property Rights: Patents, design, trademark, GI, Copyright. Indian patent system and salient features of patent Act 1970. WTO-TRIPS agreement: Development of TRIPS Complied Regime in India. Patent Databases & Patent Information System: WIPO, IPINDIA, USPTO, Google Patents etc. Novelty searches. Subject matters of patentable and non-patentable in India. Procedure of patent filing, PCT application, provisional application, date of priority.	8
6.	Startup : Stages in transforming idea to a startup, Idea – Create, develop and validation. Prototype testing, Developing the product, developing the team, creating traction for the product, pitching the startup, Sources for funding of a startup, Pre Seed funding – Business angles, accelerators, Seed Funding – Angles, venture capitalists, crowd funding, syndicate investing, SME lending, grants, Accelerator funding. Mergers and acquisition.	8
	TOTAL	40

TE	ТЕХТВООК		
1	Entrepreneurship development small business enterprises, Poornima M Charantimath,		
T	Pearson.		
2	Understanding Patent Law, Vishnu S. Warrier, LexisNexis.		
REFERENCE BOOKS			
1	Entrepreneurship, Roy Rajiv, Oxford University Press.		
2	Innovation and Entrepreneurship, Drucker. F, Peter, Harper Business.		
3	Entrepreneurship, Robert D. Hisrich, Mathew J. Manimala, Michael P Peters and Dean		
	A. Shepherd, Tata Mc-Graw Hill Publishing Co. Ltd.		
4	Enterpreneurship Development, S.S.Khanka, S.Chand & Co.		
5	Small-Scale Industries and Entrepreneurship, Vasant Desai, Himalaya Publishing		
	House.		
6	Entrepreneurship Management, Cynthia, Kaulgud, Aruna, Vikas Publ		
7	Entrepreneurship: Ideas in Action, Cynthia L. Greene, Thomson Asia Pvt.		
8	Patent Law in India, M. B. Rao, Manjula Guru, Kluwer Law International		
9	Intellectual Property Law, P Narayan, Eastern Law House		
10	Intellectual Property Rights: Drafting, Interpretation of Patent Specifications and Claims,		
	N.S. Rathore, New India Publishing Agency		
11	Handbook on Patent Law - The Patents Act, 1970, LexCampus		